Roche CP School Maths Policy

Area of Maths = Addition

Definition: Addition is to join two or more numbers (addends) or quantities to get one number called the sum or total. Jenny Eather AMDFK KEY STAGE 2 ONLY TO INCLUDE ADDENDS. addend addend total $3+7=10$			Vocabulary: add, plus, combine, total, sum, join, increase, addend, more than, greater than Basic structure: $\begin{aligned} & \text { addend + addend = sum / total } \\ & \text { Sum / total = addend + addend } \end{aligned}$				
Declarative knowledge	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition + Subtraction Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	Number bonds to 5 + some to 10 . Double facts (within 10). Odd and even numbers up to 10 .	Number bonds to 20. Odd and even numbers up to 20. Know that addition is commutative and subtraction is not.	Addition and subtraction facts within 20. Know that addition is commutative and subtraction is not.	Number bonds to 100 in multiples of 10 and 5.	Number bonds to 100 in ones. Number bonds to 1000 in multiples of 100 s and 50 s.	Add numbers mentally with increasingly large numbers. $(100 s, 1000 s+10,000 s)$ Number bonds to 1000 in multiples of $25 s+10 s$.	Know the order of calculations. (BODMAS)

	commutative law (e.g. $3+2$ = 5, therefore 2 $+3=5$).					
1	2020 Guidance	1NF-1 Develop fluency in addition and subtraction facts within 10. Year 1 document - Pages 17-23 1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers. Year 1 document-Pages 23-28 1AS-2 Read, write and interpret equations containing addition (+), subtraction $(-)$ and equals $(=)$ symbols, and relate additive expressions and equations to real-life contexts. Year 1 document - Pages 29-35 These units will run through all of the Y1 addition and subtraction objectives and will also be part of morning maths.				
1	Recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4$ $=10$, therefore $4+6=10$ and $10-6=4$) A few discrete lessons and then drip through the year. Solve one-step problems that involve addition using concrete objects and pictorial representations , and missing number problems such as $7=$? -9 .	Tens frames Double-sided counters Dienes Numicon to 10 Coins (1p to make 10p)	Pictorial representations of tens frames, numicon, coins, dienes	$\begin{aligned} & 0+?=10 \\ & 1+?=10 \\ & 2+?=10 \end{aligned}$	Here's a set of Numicon from 1 to 10, how many Numicon pairs can you put together to make 10? (Number bond sandwich) - look for odd and even patterns.	Mrs Gardner thinks there is only 2 ways to record this number sentence: $\begin{aligned} & 8+2=10 \\ & 2+8=10 \end{aligned}$ True or False? Prove it! (False 10=2+8 and $10=8+2$)

1	2020 Guidance	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising ocd Year 1 document - Pages 23-28 This will run through all of the $Y 1$ addition and subtraction objectives and will also be part of morning maths.				
1	Represent and use number bonds within 20. Recap bonds withing / to 10 and then progress up to 20 Solve one-step problems that involve addition using concrete objects and pictorial representations , and missing number problems such as $7=$? -9 .	Objects Fingers (for 10s, partners for 20s) Coins (1p and 10p) Numicon Dienes Unifix cubes Bar model with cubes / dienes Hoops and Bean bags for Part Part Whole Remember to Move the equals sign	Number line with numbers on 20 rectangle (a hundred square cut) Images Ruler/Counting stick Chn draw Add facts table Remember to Move the equals sign	Counting on (to get to 10 or 20) Abstract bar models, just numbers. Part, Part, Whole Diagrams Missing number problems Remember to Move the equals sign Fluency - Patterns Number fans	How many different ways can you make 15? Spot patterns in Add facts table e.g., colour all then numbers that make 9, can you see a pattern? Record them in a sequence. Can you record that with objects (Bar model)?	I think there are 8 different ways of making the number 14 using addition, am I correct? Do some of your calculations look similar? Recap commutative law during reasoning.
1	2020 Guidance	1AS-2 Read, write and interpret equations containing addition $(+)$, subtraction $(-)$ and equals $(=)$ symbols, and relate additive expressions and equations to real-life contexts. Year 1 document - Pages 29-35				

1	Add one-digit and two-digit numbers to 20 , including zero. This should mainly be single digit + single digit that bridge 10, such as $6+8,5+7$ Solve one-step problems that involve addition using concrete objects and pictorial representations , and missing number problems such as $7=$? -9 .	Fingers (for 10s, partners for 20s) Coins (1p, 10p, 20p) Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to Move the equals sign	Number line with numbers on 20 rectangle (a hundred square cut) Images Ruler/Counting stick Chn draw Add facts table Remember to Move the equals sign	Counting on Abstract bar models, jus \dagger numbers. Missing number problems Part Part Whole model Recording of addition Remember to Move the equals sign	Adding calculations and ordering groups of calculations. Mark my work Contextual problems e.g. I have 8 eggs, how many more do I need to fill an egg box with twelve spaces. Missing digit problems e.g. 1ם $+4=$ 17 with resources to help. Use these 3 number cards to make an addition number sentence. How many ways are there?	I have some number cards: 3, 5, 2, 0, 7 Which two number cards sum to a number greater than 10 ? James says: If I add any of the two cards together I will get a number larger than the number on either card. Is he correct? Why? I can't make a number greater than 18 by adding two single-digit numbers. True or false? Prove it! Could I make a number greater than 18 if I had three digits to add together? Give three examples.
1	Solve one-step problems that involve addition and missing numbers using concrete objects and pictorial representations					
Year 2						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		

2	[EXS] [KEY] Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then 17-3=14; leading to if $14+3=17$, then $3=14=17$, 17 $14=3$ and $17-$ $3=14$.) ५ GD objective: Solve problems with addition and subtraction rapidly recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 . Recap addition facts to 20 and then start to derive and use related facts to 100.	Fingers (for 10s, partners for 20s) Coins (1p, 10p, 20p) Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to Move the equals sign	Number line with numbers on 20 rectangle (a hundred square cut) Images Ruler/Counting stick Chn draw Add facts table Remember to Move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Recording of addition Part Part Whole model Remember to Move the equals sign	Write four different numbers to make these correct: Can you fill in the missing numbers so that each row and column make a total of 100 ? Use the cards to make as many addition and subtraction number sentences as you can. How many can you make?	True or False? If you add two even numbers together it will always make an even number. True or false? Show me how you know! If you add three odd numbers together it will always make an odd number. True or false? Show me how you know!

	(Mainly covered in Fluency work.)					
2	2020 Guidance	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice. Year 2 document - Pages 16-17				
2	Add numbers using concrete objects, pictorial representations and mentally, including a twodigit number and ones. Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any order (commutative)	Fingers Coins up to £1 Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Part Part Whole model Recording of addition no. sentences Remember to move the equals sign Column method for layout only!	Word and contextual problems Missing number in different forms, bar, objects, column Calculations that include greater than and less than symbols Money questions, cost of multiple items	I think, prove it. Odd / Even reasoning e.g. and odd plus an odd will sum to an odd; always, sometimes, never true? Adding two consecutive numbers will always give me an odd number; always, sometimes, never true?

2	2020 Guidance	2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. Year 2 document - Pages 23-26				
2	Add numbers using concrete objects, pictorial representations and mentally, including a twodigit number and tens Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition and applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any order (commutative)	Fingers Coins up to £1 (Particularly 10ps) Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Recording of addition no. sentences Part Part Whole model Remember to move the equals sign Column method for layout only!	Word and contextual problems Can you complete these triangles so that each side totals 100 ? Missing number in different forms, bar, objects, column, on a hundred square. Calculations that include greater than and less than symbols Money questions, multiples of 10 more than a number e.g. an apple cost 45 p, a banana costs 20p more, how much does a banana cost? Write numbers in the shapes to make this correct. Mr Moore says we can have 10 more minutes for golden time. We usually have 15 minutes, how long will we get today?	Caitlyn says: If you add 10 to a two-digit number you'll always get a two-digit total. Is Caitlyn always, sometimes or never correct? Explain your answer. Miss Tonkin thinks when you add multiples of 10 the ones always stay the same. Is she correct? How do you know?
2	2020 Guidance	2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. Year 2 document - Pages 23-26				

2	Add numbers using concrete objects, pictorial representations and mentally, including two two-digit numbers. Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition and applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any order (commutative)	Fingers Coins up to £l Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Part Part Whole model Recording of addition no. sentences Remember to move the equals sign Column method for layout only!	Spot the odd one out from different representations Missing digit calculations with different representations Contextual problems e.g. lengths of objects, Calculations that include greater than and less than symbols Money questions e.g. an apple cost 45 p and a banana costs 28p. How much do the cost together? Here are 4 number cards 4, 6, 7, 3 Using the following boxes find the combination that will give you a. The largest total b. The smallest total \| You can only use each card once	If I add two two-digit numbers together they will always sum to a two-digit number. Always/Sometimes/Never What's the same? What's different? Look at each number sentence. Put a tick (\checkmark) if it is correct. Put a cross (\boldsymbol{X}) if it is not correct. $\begin{aligned} & 8 \times 2=8+8 \\ & 3 \times 10=3+3+3 \\ & 5 \times 4=5+5+5+5 \end{aligned}$ \square \square \square
2	2020 Guidance	2AS-4 Add and subtra document - Pages 27	within 100 by apply 9	related one-digit	on and subtraction facts: add anc	act any 2 two-digit numbers. Year 2

2	[EXS] [KEY] Add any 2 twodigit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35)$. Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition and applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any order (commutative)	Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Number lines Hundred square	Missing number problems Part Part Whole model Recording of addition no. sentences Bar model	Katie drew a number line to help her find the answer to $37+21$ What number is hidden under the card?	Use these signs: You can use each sign more than once. Write signs in the boxes to make these correct. 25 \square 19 \square 6 15 \square 15 \square 0
2	2020 Guidance	2AS-4 Add and subtr document - Pages 27	within 100 by ap 9	related one-di	ond subtraction facts: add and su	ct any 2 two-digit numbers. Year 2

2	Add numbers using concrete objects, pictorial representations and mentally, including adding three one-digit numbers Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition and applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any order (commutative)	Fingers Coins up to £1 Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Recording of addition no. sentences Remember to move the equals sign Column method for layout only!	Adding value of coins (1p 2p 5p) Find out how many different ways of making 10 using 3 digits. You may/may not use the same digit more than once. Context questions e.g. Sarah had 2 cats, 3 dogs and 9 fish. How many pets did she have altogether? Write two numbers to make this calculation correct. Now write three numbers to make this calculation correct.	Adding 3 consecutive numbers will always give you an even number; always, sometimes, never true? Adding 3 odd numbers together will always give you an even number; always, sometimes, never true?
Year 3						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning

		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT				
3	2020 Guidance 3AS-1 Calculate compleme nts to 100, for example: $46+?=100$	Dienes Coins (For change) PV counters	Hundred square Pictorial hundred diene Bar models Part-whole models	Missing number questions Bonds sheets for pattern-spotting (Already prepared)	A dressmaker had 1 m of ribbon. Then she used 22 cm of it. How many centimetres of ribbon does she have left? A toy shop sells ping-pong balls for 65p each. If I use a £1 coin to pay for a ping-pong ball, how much change will I get, in pence? Mr Jones has 100 stickers. 47 of them are gold and the rest are silver. How many are silver?			Mr Moore says: "Finding bonds to 100 is easy, you make the ones digits add up to ten and the tens digits add up to 10 . For example $43+67=100$ because $3+7$ $=10$ and $4+6=10$." Explain why Mr Moore is wrong.
3	[Key] Add numbers mentally, including three-digit number and hundreds.	Fingers Numicon Dienes Coins - particularly £1 Multi-link cubes Bar model with cubes / dienes Remember to move the equals sign PV Chart for placing objects	Blank number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Remember to move the equals sign Arrow cards	Counting on Abstract bar models, just numbers. Missing number problems Part Part Whole model Remember to move the equals sign	Word Missing bar, ob Missing 1000:		val problems different forms, hundred square. ares e.g. Make	If I count up in hundreds from 125 will I get to 725 ? Explain your reasoning. James completed the question below and his teacher marked it as incorrect: $345+100=355$ Can you explain the mistake James has made?

		Remember to move the equals sign PV Chart for placing objects	Chn draw Remember to move the equals sign Arrow cards	Remember to move the equals sign	Mr Moore says we can have 10 more minutes for Science. We usually have 115 minutes, how long will we get today?	Is Mrs Campbell correct? Explain why / why not. Thomas says "I have a money jar just for £ 10 notes and I have £ 145 saved in side it." If Thomas' jar does only have £ 10 notes in it is it possible for him to have £ 145 ? Explain your answer.
	Shape spa	d measure oppor	s: Adding multiples	10p to an amount	ney.	
3	2020 Guidance	3NF-1 Secure fluency 3NF-3 Apply place-va $30 \times 4=120 ; 120 \div 4=$	addition and subtra knowledge to kno Year 3 document	facts that bridge additive and multipli ges 30-32	hrough continued practice. Year 3 ive number facts (scaling facts by	cument - pages 25-27 for example: $80+60=140 ; 140-60=80$.
3	[Key] Add numbers mentally, including three-digit number and ones. (Recap 2 digit and ones)	Fingers Numicon Dienes Coins for 2digit and 1 digit. Multi-link cubes Bar model with cubes / dienes Remember to move the equals sign PV Chart for placing objects	Blank number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Remember to move the equals sign Arrow cards	Counting on Abstract bar models, just numbers. Missing number problems Part Part Whole model Remember to move the equals sign	Word and contextual problems e.g. I have 123 pencils. James gives me 8 more. How many do I have now? Missing number in different forms, bar, objects, column Calculations that include greater than and less than symbols Money questions, cost of multiple items	I think.... Odd / Even reasoning e.g. an odd plus an odd will sum to an odd; always, sometimes, never true? Prove it! Mrs Welch thinks when you add a one digit number to any 3 digit number, only the ones change. True or False? How do you know?

3	2020 Guidance	$3 \mathrm{NF}-1$ Secure fluency in addition and subtraction facts that bridge 10, through continued practice. Year 3 document - pages 25-27						
3	Add numbers with up to three digits, using formal written methods of columnar addition. (Recap 2 + 2 digits)	Coins Numicon Dienes Multi-link cubes Bar model with cubes / dienes Counters with PV charts Remember to move the equals sign	Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Part Part Whole model Recording of addition (See Written Method Calculation Policy) Remember to move the equals sign	I earnt £150 pocket money last year and £22 this month. How much money have I earnt in total? Show the children six partition addition calculations. Which one have no carry digits? I want to build a Lego model that needs 400 pieces. I have 137 bricks in one tub and 357 bricks in another tub. Do I have enough?	Sam is ad place va Show chi for the ab it correct Can you	ing two chart: Tens place (10) (10) (10) (10) (10) 10 en a pa ve diag xplain th	umbers in a counters itioned calculation am with an error in, is error?
	Shape space and measure opportunities: Solve simple problems in a practical context involving addition of money of the same unit, including giving change.							
3	2020 Guidance	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice. Year 3 document - pages 25-27. 3 NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10), for example: $80+60=140 ; 140-60=80$. $30 \times 4=120 ; 120 \div 4=30$. Year 3 document - pages 30-32. 3AS-2 Add and subtract up to three-digit numbers using columnar methods. Year 3 document - pages 36-39.						

Year 5						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
5	[KEY] Add whole numbers with more than 4 digits, including using formal written methods (columnar addition). [KEY] Add numbers mentally with increasingly large numbers. Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.	Coins Dienes Move the equals sign Measuring jug /scale Counters with PV charts Numicon Remember to move the equals sign	Blank number line 100 square Abacus PV chart Arrow cards Bar Model Metre ruler Images Ruler/Counting stick Measuring jug / scale Chn draw	Abstract bar models, just numbers. Missing number problems Recording of addition/columnar methods (See Written Method Calculation Policy) Part Part Whole model Moving the equals sign	65,000 35,000 Two car salesmen are in a competition to sell £25, 000 worth of cars in a week. James sells $£ 14,567$ worth of cars and Mark sells $£ 9,976$ worth of cars. How much did they sell in total? Did they hit their $£ 25,000$ target? A five digit number and a four digit number have a total of 25,365 Give me three possible pairs of numbers that could make this total.	There is a mistake in the following calculation. $\begin{gathered} 2451 \\ +562 \\ \hline 8071 \end{gathered}$ Explain the mistake and then make a correction to find the correct answer. My answer is 5,398 What's the question? Create 3 addition calculations. Did you use a strategy? Explain it.
	Shape space and measure opportunities: Measur Calcula			and calculate the peri different measures,	ter of a rectilinear figure (including sq uding money in pounds and pence	ares) in centimetres and metres

	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs		
5	2020	SNF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth), for example: $8+6=$ $14,0.8+0.6=1.4,0.08+0.06=0.14 ; 3 \times 4=12,0.3 \times 4=1.2 ; 0.03 \times 4=0.12 . ~ Y e a r ~$ Guidance document - Pages $37-40$	

Year 6

6	2020 Guidance	6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.

Area of Maths = Subtraction

Definition: Subtraction is to take one quantity away from another. Jenny Eather AMDFK			Vocabulary: subtract, take away, decrease, remove, find the difference. Basic structure: minuend - subtrahend = difference (KS2 only)				
Declarative knowledge	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Subtraction Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	Number bonds to 5 + some to 10 . Subtraction facts within 5 + some to 10.	Subtraction facts within 20. Odd and even numbers up to 20 . Know that addition is commutative and subtraction is not.	Subtraction facts within 20. Know that addition is commutative and subtraction is not.	Number bonds to 100 in multiples of 10 and 5 .	Number bonds to 100 in ones. Number bonds to 1000 in multiples of 100 s and 50 s.	Subtract numbers mentally with increasingly large numbers. (100s, 1000s + 10,000s) Number bonds to 1000 in multiples of $25 \mathrm{~s}+$ 10s.	Know the order of calculations. (BODMAS)

Year 1						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Writ e it! SAY IT		
1	Non-stat guidance 1AS-1 Compose numbers to 10 from 2 parts. Subtraction structures (reduction), including partwholes and first, then, now statements and models. Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs. Solve one-step problems that involve subtraction using concrete objects and pictorial	Numicon (Place the minuend down, subtrahend on top, what is the difference ?	Can you describe what is happening in the picture above? Can you write a number sentence to match?	Can you draw these calculations using tens frames? $\begin{aligned} & 4-1= \\ & 6-2= \\ & 9-5= \end{aligned}$	Can you write your own subtraction story using first, then, now?	Look at this image. Mr Moore says: "This shows that $3+0=3$ " Mrs Gardner says: "This shows that $3-0=3$ " Who is correct?

	representations, and missing number problems such as $11=?+9$.					
1	Represent and use number bonds and related subtraction facts within 20. Solve one-step problems that involve subtraction using concrete objects and pictorial representations, and missing number problems such as $11=?+9$.	Objects Fingers (for 10s, partners for 20s) Coins (1p and 10p) Numicon Dienes Unifix cubes Bar model with cubes / dienes Hoops and Bean bags for Part Part Whole Remember to Move the equals sign	Number line with numbers on 20 rectangle (a hundred square cut) Images Ruler/Counting stick Chn draw Add facts table Remember to Move the equals sign	Counting back (to get to 0 or 10) Abstract bar models, just numbers. Missing number problems Moving the equals sign	How many different ways can you make 10 using subtraction? Procedural variation: $\begin{aligned} & 20-10=10 \\ & 19-9=10 \\ & 18-8=10 \end{aligned}$ Here's a set of Numicon. Make the numbers 14,17 and 20. What do you need to take away from these to get to ten? Can you write these as calculations? Look at the numbers. $\begin{array}{llll} 15 & 7 & 16 & 8 \end{array}$ Use two of these numbers to make this correct.	Fill in the missing numbers. $\begin{aligned} & 11+\square=20 \\ & 20-\square=11 \end{aligned}$ Can you make two more number sentences using the same three numbers? How many ways can you complete the see-saw? Touch on commutative law during reasoning

	derive and use related facts up to 100 . Recap addition facts to 20 and then start to derive and use related facts to 100. (Mainly covered in Fluency work.)					
2	2020 Guidance	2NF-1 Secu	vency in addition and subtraction	s within 10,	gh continued practice. Year 2 docume	Pages 16-17
2	Subtract numbers using concrete objects, pictorial representations, and mentally, including a twodigit number and ones. Solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures. Solve problems with subtraction applying their increasing	Fingers Coins up to £1 Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Recording of subtraction Column method (just for layout.)	There are 20 balloons. 7 balloons fly away. How many balloons are left? Ben puts 15 buttons on a table. He hides some of them under his hand. How many buttons is Ben hiding?	Odd / Even reasoning e.g. an odd number subtract another odd number will have an even difference; always, sometimes, never true? "The difference between two even numbers will always be odd" True or false? I am thinking of a two digit number, if I subtract ones from it, I will only need to change the ones digit. True or false? Explain your answer.

	knowledge of mental and written methods. Show that subtraction of one number from another cannot be done in any order (noncommutative)			Moving the equals sign	Bethan has 6p. She wants to buy a drink. How much more money does she need?	
2	2020 Guidance	2AS-3 Add two-digit num	subtract within 100 by applying rela er. Year 2 document - Pages 23-2	d one-digit	ion and subtraction facts: add and sub	only ones or only tens to/from a
2	Subtract numbers using concrete objects, pictorial representations, and mentally, including a twodigit number and tens Solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures Solve problems with subtraction applying their increasing knowledge of mental and written methods.	Fingers Coins up to £1 (Particularl y 10ps) Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, jus \dagger numbers. Missing number problems Recording of subtraction Column method (just for layout.) Moving the equals sign	Word and contextual problems Missing number in different forms, bar, objects, column, on a hundred square. 19 \qquad Calculations that include greater than and less than symbols Money questions, multiples of 10 more than a number e.g. an apple cost 45 p, a banana costs 20p less, how much does a banana cost?	Harry says "I have 45 pence in my pocket. If I give out 10p to each of my friends eventually my pocket will be empty" Do you agree with Harry? Explain your answer.

	Show that subtraction of one number from another cannot be done in any order (noncommutative)					
2	2020 Guidance	2AS-3 Add †wo-digit num	d subtract within 100 by applying rel ber. Year 2 document - Pages 23-2	d one-digit a	ition and subtraction facts: add and	only ones or only tens to/from a
2	[Key] Subtract numbers using concrete objects, pictorial representations, and mentally, including two two-digit numbers. Solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures Solve problems with subtraction applying their increasing knowledge of mental and written methods. Show that subtraction of one number	Fingers Coins up to £1 Numicon Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Blank Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Arrow cards Remember to move the equals sign	Counting on Abstract bar models, just numbers. Missing number problems Recording of subtraction Column method (just for layout.) Moving the equals sign	The strawberry weighs $\mathbf{2 4}$ grams. The strawberry and tomato together weigh 69 grams. What does the tomato weigh?	If I subtract one two-digit number from another the difference will always be a two-digit number. Always/Sometimes/Never Ben works out the answer to this $57-16=$ Ben gets the answer 11 . Ben thinks he is incorrect. Can you check his answer and explain where he went wrong?

	from another cannot be done in any order (noncommutative)				
2	2020 Guidance	2AS-4 Add document	subtract within 100 by applying related one-digit a ges 27-29	dition and subtraction facts: add and su	any 2 two-digit numbers. Year 2
2	[EXS] [KEY] Subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. 72-17). Solve problems with addition using concrete objects and pictorial representations including those involving numbers, quantities and measures. Solve problems with addition and applying their increasing knowledge of mental and written methods. Show that addition of two numbers can be done in any	Dienes Unifix cubes Bar model with cubes / dienes Remember to move the equals sign	Number lines Missing number Hundred square Part Part Whole model Recording of addition no. sentences Bar model	Ben has £19 A game costs £25 How much more money does Ben need to buy the game? There are 100 g of chocolate chips in the bag. Sita uses 25 g . Ben uses 35 g . How many grams of chocolate chips are left in the bag?	Use these signs: You can use each sign more than once. Write signs in the boxes to make these correct. 25 \square 19 \square 6 15 \square 15 \square 0

	Order (commutative)					
2	2020 Guidance	2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers. Year 2 document - Pages 27-29				
Year 3						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Writ e it! SAY IT		
3	[Key] Subtract numbers mentally, including three-digit number and hundreds.	Coins, subtracting £1 Numicon Dienes Multi-link cubes Bar model with cubes / dienes Moving the equals sign	Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Moving the equals sign	Counting back Abstract bar models, just numbers. Missing number problems Recording of addition Place value cards Moving the equals sign	Word and contextual problems Missing number in different forms: bar, objects, on a hundred square. James makes the number 464 using arrow cards. He wants to take away one hundred from his number and make the answer using arrow cards. Circle the arrow card that he needs. What is Mr Moore's new number?	True or false: If I count back in hundreds from 350 I will say 100. Explain your answer. James completed the question below and his teacher marked it as incorrect: $733-200=713$ Can you explain the mistake James has made?

	Shape space and measure opportunities: Adding pounds to an amount of money. Adding metres to a number of centimetres.						
3	2020 Guidance	$3 N F-1$ Secure fluency in addition and subtraction facts that bridge 10, through continued practice. Year 3 document - pages 25-27. 3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10), for example: $80+60=140$; $140-60=$ $80.30 \times 4=120 ; 120 \div 4=30$. Year 3 document - pages $30-32$.					
3	$\begin{aligned} & \text { Su } \\ & \text { nu } \\ & \mathrm{m} \\ & \text { in } \\ & \text { th } \\ & \text { nu } \\ & \text { te } \end{aligned}$	Coins particularly 10p Numicon Dienes Multi-link cubes Bar model with cubes / dienes Moving the equals sign	Number line 100 square Abacus PV chart Metre ruler Images Ruler/Counting stick Chn draw Moving the equals sign	Counting back Abstract bar models, just numbers. Missing number problems Recording of addition Place value cards Moving the equals sign	Word and Missing num objects, on \square Missing num Calculation and less th Money que than a num printer costs printer cost	xtual problems in different forms: bar, dred square. quares e.g. Make 100: 30 20 include greater than mbols , multiples of 10 more .g. a laptop costs £354, a less, how much does a	Sarah has the following Dienes Sarah says "If I keep taking away tens I will end up with zero" Is Sarah correct? Explain your answer. Show them a couple of calculations - What answer is not correct - how do you know?
	Shape space and measure opportunities: Subtracting multiples of 10p to an amount of money.						
3	2020 Guidance	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice. Year 3 document - pages 25-27 3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10), for example: $80+60=140 ; 140-60=$ $80.30 \times 4=120 ; 120 \div 4=30$. Year 3 document - pages $30-32$.					

Year 4						
Year group	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Writ e it! SAY IT		
4	Subtract numbers with up to 4 digits using the formal written methods of columnar addition where appropriate [KEY] Solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why.	Coins Dienes Bar model Move the equals sign Measuring jug /scale Abacus Arrow Cards	Number line 100 square Abacus PV chart Arrow cards Metre ruler Images Ruler/Counting stick Measuring jug / scale Chn draw	Abstract bar models, just numbers. Missing number problems Recording of subtraction Place value cards Part part whole model Moving the equals sign Columnar methods	Complete this bar model using only subtraction: Mrs George has 2098 pencils in the office cupboard. Mr Moore takes 133 pencils. How many does Mrs George have now? As Mr Moore leaves with his pencils Mrs Powell comes into the office and takes 44 pencils. How many pencils does Mrs George have now? Ms Palk has $£ 4,012$ in her class budget and Mrs Gardner has $£ 6,257$ in her class budget What is the difference between the two budgets?	Harry says: "When you do a subtraction the difference is always smaller than the number you start with, for example $29-15=14,14$ is smaller than 29." Is Harry always, sometimes or never true? Explain your answer. Complete the calculation $\begin{array}{r} \square 04 \\ -\underline{201} \\ \underline{34} \end{array}$

Year 5						
Year group $:$	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	

		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Writ e it! SAY IT		
5	[KEY] Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) [KEY] Subtract numbers mentally with increasingly large numbers. Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Coins Dienes Bar model Move the equals sign Measuring jug /scale Abacus	Number line 100 square Abacus PV chart Arrow cards Metre ruler Images Ruler/Counting stick Measuring jug / scale Chn draw	Abstract bar models, just numbers. Missing number problems Recording of addition Moving the equals sign Part part whole model Columnar	A five digit number and a four digit number have a difference of 4,365 Give me three possible pairs of numbers. Adam earns $£ 48650$ a year. He has to take a pay cut of $£ 16125$. How much is his new salary?	My answer is 6,786 What's the question? Create 3 subtraction calculations. Did you use a strategy? Explain it. There are mistakes in the following calculations. Explain the mistake, then make a correction to find the correct answer. A stadium has a capacity of 60000 It needs to sell 35000 tickets for a concert to go ahead. The concert sells out, but then 45250 people are taken ill and want their money back. Will the concert be able to go ahead? Explain your answer.
	Shape space and measure opportunities: Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres Calculate different measures, including money in pounds and pence Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs					

| 5 | 2020 |
| :--- | :--- | :--- |
| Guidance | $5 \mathrm{NF}-2$ Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth), for example: $8+6$
 $=14,0.8+0.6=1.4,0.08+0.06=0.14 ; 3 \times 4=12,0.3 \times 4=1.2 ; 0.03 \times 4=0.12$. Year 5 document - Pages $37-40$ |

Year 3						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
3	Estimate the answer to a calculation and use inverse operations to check answers.	Coins Dienes Move the equals sign	Number line 100 square Abacus PV chart Arrow Cards Metre ruler Images Ruler/Counting stick Chn draw Move the equals sign	Move the equals sign. $\begin{aligned} & 32+59 \\ & \text { My Estimate: } \square+\square \end{aligned}$ Calculate the addition below then use an inverse calculation to check it: (Use the formal method your class are used to.)	John wants to buy 3 video games costing £22 each. He has a $£ 50$ note to spend. Give an estimated calculation to show that John does not have enough money. Check these bar models for accuracy:	Niamh estimates the answer to $489+109$ as shown:489 + $109=500$ Do you agree with Niamh? Explain your answer. Estimate how many pencils there are in Year 3 and Year 4. Explain the numbers you chose for your estimate

3	Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Coins Dienes Move the equals sign	Number line 100 square Abacus PV chart Arrow Cards Metre ruler Images Ruler/Counting stick Chn draw Move the equals sign	Complete this calculation: $\begin{array}{r} 15 \square \\ +\quad 4 \square \\ \hline \square 15 \end{array}$ Move the equals sign	Sally buys a drink for 35 p and pays with a $£ 1$ coin. How much change does she receive? There are 250 pupils in a school. 162 are in Key Stage 2 and the remainder are in Foundation Stage and Key Stage 1. How many pupils are in in Foundation Stage and Key Stage 1? Seb has a box of 120 cubes. He uses some of the cubes to build a tower. 77 cubes are left over. How many cubes has he used? Seb has 77 cubes left over. He builds two more towers. One tower uses 18 cubes and the other uses 35 cubes. How many of his 77 cubes has he got left now?	Dev has three discs. Each disc has a 7 on one side and an 8 on the other side. He spins all the discs and adds the three scores together. How many different totals can he get using the three discs? Dev adds another disc. How many different totals can he get now?

Year 4						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
4	[KEY] Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Coins Dienes Move the equals sign Measuring jug /scale	Number line 100 square Abacus PV chart Arrow Cards Metre ruler Images Ruler/Counting stick Measuring jug / scale Chn draw Move the equals sign	Abstract bar models, just numbers. Missing number problems Recording of subtraction Part part whole model Moving the equals sign Columnar methods Work out the value of each shape $+\Delta=16$ $+\bigcirc$ $+\triangle=25$ $+\triangle$ $+$ \square $=30$	A supermarket has 1284 loaves of bread at the start of the day. During the day, 857 loaves are sold and a further 589 loaves are delivered. How many loaves of bread are there at the end of the day?	Here is a number sentence: $350+278+250$ Add the numbers in different orders to find the answer. Is one order of adding easier? Why? Sam is trying to work out his change from a twenty pound note. He spent $£ 7$ on a lunchbox and £6 on a pencil case. Explain how you would work out his change. Is there more than one method?

Year 6						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
6	[EXS] [KEY] Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Coins Dienes Move the equals sign Measuring jug /scale	Number line 100 square Abacus PV chart Arrow Cards Metre ruler Images Ruler/Counting stick Measuring jug / scale Chn draw	Abstract bar models, jus \dagger numbers. Missing number problems Recording of addition Place value cards Moving the equals sign Part part whole model Columnar Written word problems	Adam earns $£ 37,566$ pounds a year. Sarah earns £22,819 a year. How much do they earn altogether? They have to pay $£ 7,887$ income tax per year. How much are they left with after this is taken off? The number in \mathbf{A} is twice the number in \mathbf{D}. The number in \mathbf{B} is $\mathbf{5}$ less than the number in \mathbf{C}. The number in \mathbf{D} is $\mathbf{1 0}$ more than the number in \mathbf{B}. Write the missing numbers in this diagram. Emily, Ben and Nisha take part in a	Leon and Sara each started with different numbers. Leon added five to his number. Sara subtracted 8 from her number Leon and Sara both get the same answer. What numbers could they have started with? Can you give another pair? Can you find a rule to solve this problem?

| | | | | sponsored swim to collect money for
 charity. Emily collects £2.75 more than
 Nisha. Ben collects £15 Nisha collects £7
 less than Ben. Altogether how much
 money do the three children collect? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

