Fractions, Decimals, Percentages and Ratio 2023-24

Declarative knowledge

Declarative knowledge	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Fractions Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	Half facts in relation to doubles, up to half of $10=5$	Define a half as one of two equal parts of a shape, object or amount. Define a quarter as one of four equal parts of a shape, object or amount. Half facts in relation to doubles, up to half of $20=10$	$\frac{1}{2}$ is equivalent to $\frac{2}{4}$ Define one third as one of three equal parts of a shape, object or amount. Recall half facts for multiples of 10 up to 100 Example: half of $60=30$, half of $70=35$.	Define fractions as being either unit- or non-unit fractions. Know that $1 / 10$ is equivalent to 0.1, $2 / 10$ is equivalent to $0.2 \ldots$ up to $10 / 10$ is equivalent to 1 Know that, for unit fractions, as the denominator increases the size or the fraction decreases.	Know decimal equivalents of $1 / 2,1 / 4$ and $3 / 4$. Know fractional and decimal equivalents of any number of tenths or hundredths. Define proper fractions, improper fractions and mixed numbers.	Recall percentage and decimal equivalents of $1 / 2$, 1/4, 1/5, 2/5, 4/5 and those fractions with a denominator of a multiple of 10 or 25. Write percentages as a fraction / 100 and its decimal equivalent. Say whether any fraction with an even-numbered denominator is greater than or less than a half. Example: is $6 / 8$ bigger or smaller than a half?	Say whether any fraction is greater than or less than a half, including fractions with oddnumbered denominators. Example: is $3 / 5$ bigger or smaller than a half?

Year 1						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
1	Recognise, find and name a half as one of two equal parts of an object, shape or quantity. Progression Launch for half - carousel of cutting string in half, cutting paper in half $=$, filling a glass half way and finding half way between two places Practicalcutting objects Practicalcutting shapes Pictorial shapes	Counters Objects $2 \times$ Hoops, cups or plates for sharing into. Numicon Unifix Money Dienes Dice Shapes "Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers	Pictures of objects and groups. Pictures of practical resources. Arrays (That will divide by 2.) Shapes (Regular + Irregular) Pictorial versions of food items	Number sentences (Make relationship between dividing by 2.) Missing numbers Missing symbols Move the equals sign Bar Model	What is half of this amount? These images show squares split in half: \square How might you check that each was correct? Can you find any other ways to split a square in half?	Sam is trying to halve the number 20. He gets 20 cubes and tries to split them between 3 plates. Has Sam done this correctly?

| | fluency, R and
 PS
 Practical-sets
 of objects.
 Pictorial-sets
 of objects
 Abstract-sets
 of objects,
 drawing the
 amount in their
 book and then
 sharing it into 2
 equal groups. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Year 2						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
2	Recognise, find, name and write 1/2 of a length, shape, set of objects or quantity. (Recap of Y I objective, do a diagnostic assessment beforehand to see how much needs to be covered)	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money Dienes Dice Shapes Lengths of materials e.g., border paper.	Pictures of objects and groups. Pictures of practical resources. Arrays (That will divide by 2) Shapes (Regular + Irregular)	Number sentences (Make relationship between division and fractions). Missing numbers Missing symbols Move the equals sign Bar Model $1 / 2$ of $2=$ $1 / 2$ of $4=$ $1 / 2$ of $6=$ $1 / 2$ of $8=$ $1 / 2$ of $10=$	Which pictures show $\frac{1}{2}$?	Odd One Out $\frac{1}{2}$ \square One half Which is the odd one out? Explain your answer. Rosie says the shaded part of the shape does not show a half because there are four parts, not two equal parts. Do you agree? Explain why.

objects and amounts. Write simple fractions for example, $2 / 4$ of $12=6$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	Lengths of materials e.g. border paper.		$2 / 4 \text { of } 20=$ Look at these fractions. $\begin{array}{llll} \frac{1}{2} & \frac{1}{3} & \frac{2}{4} & \frac{3}{4} \end{array}$ Circle the two fractions that are equal.		Jayne says that the shaded part of the whole square below does not show a half because there are three pieces not two. Explain your reasoning.
[EXS] Recognise, find, name and write fractions $1 / 3$, $1 / 4,2 / 4$ and 3/4 of a length, shape, set of objects or quantity. Reminder to use GT LT and equals symbols. Write simple fractions for example, $3 / 4$ of $12=9$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money Dienes Dice Shapes Lengths of materials e.g., border paper.	Pictures of objects and groups. Pictures of practical resources. Arrays (That will divide by 4) Shapes (Regular + Irregular) Sita has 8 strawberries. She eats $3 / 4$ of them. How many does she eat?	Number sentences (Make relationship between division and fractions). Missing numbers Missing symbols Move the equals sign Bar Model $3 / 4$ of $4=$ $3 / 4$ of $8=$ $3 / 4$ of $12=$ $3 / 4$ of $16=$ $3 / 4$ of $20=$ Use counters, cubes, or bar models to help you fill in the blanks:	The Giant finds a beanstalk that is 40 m tall and climbs half way up. Jack finds a beanstalk that is 40 m tall and climbs $\frac{3}{4}$ of the way up. Who climbed the highest? Eva eats three-quarters of her sweets. She eats these sweets. How many sweets does Eva have left?	Amir is using beanbags and hoops to find three quarters of 20. Can you spot his mistake?

[EXS] Recognise, find, name and write fractions $1 / 3$, 1/4, 2/4 and $3 / 4$ of a length, shape, set of objects or quantity. Reminder to use GT LT and equals symbols. Write simple fractions for example, $1 / 3$ of $12=4$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money Dienes Dice Shapes Lengths of materials e.g., border paper.	Pictures of objects and groups. Pictures of practical resources. Arrays (That will divide by 3.) Shapes (Regular + Irregular) Tick the shape that has exactly 1/3 shaded. \square \square \square \qquad	Use the cubes to make 3 equal groups.	Annie has a piece of ribbon. She cuts it into three equal parts. One third of the ribbon is $\mathbf{6 \mathrm { cm }}$ long. How long would half the ribbon be?	Tick the correct bar model for the calculation $1 / 3$ of $12=4$: How do you know? Dora says, I have one third of a pizza because I have one slice and there are three slices left.

Year 3

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
3	Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators. (Using Fractions of a shape or number.)	Counters Objects Hoops, cups or plates for sharing into. Numicon Multilink	Pictures of objects and groups. Pictures of practical resources. Arrays Shapes Number lines	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	Mark buys a bag of 12 apples. He eats $\frac{2}{3}$ of them. How many did he eat? Claire takes $\frac{1}{3}$ of the orange squares. Simon takes $\frac{4}{9}$. How many will be left?	What do you notice? $\begin{aligned} & 1 / 10 \text { of } 10=1 \\ & 2 / 10 \text { of } 10=2 \\ & 3 / 10 \text { of } 10=3 \end{aligned}$ Continue the pattern. What do you notice? What about $1 / 10$ of 20 ? Use this to work out 2/10 of 20, etc.
	2020 Guidance and progression	3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.			6F-1 Recognise when fractions can be simplified, and use common factors to simplify fractions.	
		3F-3 Reason about the location of	4F-1 Reason about the location of mixed		6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and	

		straight away with this.	This diagram has 5/10s shaded how much more do I need to shade to have 8 tenths shaded? Encouragement to count on with the above questions. This will also help you when you get to adding and subtracting fractions with the same dominator.			Explain why / why not.
3	Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators. Stick to 2-digit amounts and denominators that are Y3ARE tables $(2,5,10,3,4,8)$	Counters Objects Hoops, cups or plates for sharing into. Numicon Multilink	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	Lucas ate $3 / 4$ of the cakes. Archie ate the rest. How many cakes did Archie eat?	Sophia says " $1 / 3$ of the stars are shaded." Tegan says " $3 / 9$ of the stars are shaded." Who is correct? Explain your answer.
	2020 Guidance and progression	3F-2 Find unit fractions of quantities		5F-1 Find non-unit fractions of quantities.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	

		using known division facts (multiplication tables fluency).				
3	Recognise and show, using diagrams, equivalent fractions with small denominators. (Stick with denominators in the X Tables you do in Y3 and Y 2 , 2,5,10,3,4,8)	Counters Objects Numicon Multilink	Pictures of objects and groups. Pictures of practical resources. Arrays Shapes	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	9. Peter ate $\frac{1}{2}$ of his bar of chocolate, Damian ate $\frac{2}{4}$ of his bar of chocolate and Polly ate $\frac{3}{6}$ of her bar of chocolate. Who had the most remaining?	What fraction of each shape are shaded? Are they equivalent? How do you know? \square \square Prove to me that $\frac{1}{2}=\frac{4}{8}$ Is there another equivalent fraction?

						Hannah says the diagrams below show that $1 / 4>1 / 2$ Do you agree? Explain why / why not.
3	Add and subtract fractions with the same denominator within one whole [for example, $3 / 8$ $+2 / 8=5 / 8]$.	Numicon! Think of staff meeting example.	Shading parts of a diagram. (Not always circles or squares.) Cutting up tenths to add or subtract which emphasises the size doesn' \dagger change, just the number of parts.	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	What is the missing fraction? $\begin{aligned} & \frac{3}{10}+\square=\frac{7}{10} \\ & \frac{2}{5}=\square-\frac{1}{5} \\ & \square+\frac{3}{7}=1 \end{aligned}$ $\frac{2}{6}+\frac{2}{6}=\frac{1}{6}+\square$	Mrs Welch has been adding fractions with Mrs Grigg. Mrs Welch thinks the answer is $\frac{5}{18}$ Mrs Grigg thinks it is $\frac{5}{8}$. Who is correct? Explain. Mrs Welch has made a mistake. Can you explain what she has done wrong? $\frac{3}{9}+\frac{4}{9}=\frac{7}{18}$ Fill in the numerators to make the calculation correct. $\overline{8}+\overline{8}=1$ How many ways can you do it? Explain how you know that you have found them all.

	2020 Guidance and progression	3F-4 Add and subtract fractions with the same denominator, within 1 .	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	5F-3 Recall decimal fraction equivalents for $1 / 2,1 / 4,1 / 5$ and $1 / 10$, and for multiples of these proper fractions.		
3	Compare and order unit fractions, and fractions with the same denominators.	Numicon Multilink Smarties	Number lines	Bar Model GT LT and equals symbols	What have you noticed about my number line? Why are the intervals not spaced evenly? Which fraction is easiest to begin with? Why? Can you place the other fractions?	What fraction is shown on each bar? Which fraction is the biggest amount? What have you noticed?

3	Solve problems that involve my understanding of fractions. This is where you use all the content from above and put it into problems. Still do them practically pictorially and abstractly. You will have done some of this already, but this can be used for more consolidation.	Counters Objects Hoops, cups or plates for sharing. Numicon Multilink Smarties! Money	Pictures of objects and groups. Pictures of practical resources. Shapes	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	As above	As above

					$1 / 2+1 / 2=1 \text { and } 0 / 2+2 / 2=1$ We could swap the addends, but we don't need to as addition is commutative. How many unique ways are there of adding amounts of quarters to create a whole? What about eighths?
	Shape, space, measure and statistic opportunities: Adding and subtracting fractions of length, weight or capacity as 2-star questions e.g., $1 / 5 \mathrm{~m}+2 / 5 \mathrm{~m}=$? $\mathrm{m}=$? cm				
4	4F-1 Reason Folding / about the cutting location of activities with mixed numbers paper, card, in the linear cake etc. number system. Was new in $2020 / 21$	Number lines with marked intervals See 2020 gov guidance Y4 p48 Draw a number line. Put the following fractions on the line: $1 / 2,1$ and $1 / 4,2$ and $1 / 2,1$ and $3 / 5$, 1 and $3 / 4$ Fraction walls	Add labels to each mark on the number lines. Estimate the position of the following numbers on the number line. ```2\frac{2}{9} llllll```	How much water is in the beaker? Write your answer as a mixed number.	Circle the larger number in each of these pairs. Explain your reasoning. $\begin{array}{ll} 3 \frac{3}{9} & 3 \frac{8}{9} \\ 4 \frac{1}{3} & 4 \frac{1}{8} \\ 2 \frac{1}{3} & 1 \frac{2}{3} \end{array}$

4	4F-2 Convert mixed numbers to improper fractions and vice versa. Was new in 2020/21	Numicon. Use 10 as one whole and show numicon additions and subtractions to go over and under 1. "Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers	Shading parts of a diagram. (Not always circles or squares.) (i) (i) (1) (1) $\frac{1}{1} \frac{1}{5}$ ${ }_{4}^{2 / 24}$	Number lines with mixed and improper labels (see 2020 guidance, Y4 p51). Express the following mixed numbers as improper fractions. $\begin{array}{llll} 4 \frac{1}{8} & 6 \frac{4}{9} & 3 \frac{11}{12} & 8 \frac{2}{3} \end{array}$ Express the following improper fractions as mixed numbers. $\begin{array}{llll} \frac{17}{2} & \frac{13}{6} & \frac{28}{10} & \frac{41}{7} \end{array}$ How many quarters are there in $2 \frac{3}{4}$	I have a 6 and $1 / 2 \mathrm{~m}$ length of string. How many $1 / 2 m$ lengths can I cut? The school kitchen has 17 packs of butter. Each pack weighs $1 / 4 \mathrm{Kg}$. How many kilograms of butter do they have altogether? Express your answer as a mixed number.	Sarah wants to convert 17 / 4 to a mixed number. She writes: $\frac{17}{4}=3 \frac{5}{4}$ Explain what mistake Sarah has made and write the correct answer.
	2020 Guidance and progression		4F-2 Convert mixed numbers to improper fractions and vice versa.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.		
4	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	Numicon. Use 10 as one whole and show numicon additions and subtractions to go over and under 1 . "Cuttable" food items,	Shading parts of a diagram. (Not always circles or squares.) ${ }_{4}^{4}-2 \frac{2}{4}$	Tick (V) two cards that give a total of 5 \square	I have 5 m of rope. I cut off $4 / 10 \mathrm{~m}$ How much rope is left? It is a $23 / 4 \mathrm{~km}$ cycle ride to my friend's house, and a further $3 / 4 \mathrm{~km}$ ride to the park. How far do I have to cycle altogether? The table below shows the number of hours Josie read each day during a	

	Was new in 2020/21	pizzas, cake, apples. Include noncircular items, such as cucumbers			school week. For how long did Josie read altogether?					
					Mon $1 \frac{3}{4}$ hours	Tues 1 hour	Wed $1 \frac{1}{4}$ hours	Thurs $\begin{gathered} 1 \frac{1}{4} \\ \text { hours } \end{gathered}$	Fri $2 \frac{3}{4}$ hours	
	2020 Guidance and progression	3F-4 Add and subtract fractions with the same denominator, within 1 .	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	5F-3 Recall decimal fraction equivalents for $1 / 2,1 / 4,1 / 5$ and $1 / 10$, and for multiples of these proper fractions.						
4	Recognise and show, using diagrams, families of common equivalent fractions. E.g., $1 / 2,1 / 4,1 / 3$, 1/10, 1/5 extend onto 1/100 (Not done before.)	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers	Shading parts of a diagram. (Not always circles or squares.) Cutting up fractions to add or subtract which emphasises the size doesn' \dagger change, just the number of parts. Look at these diagrams:	Number sentences Missing numbers Missing symbols GT and LT symbols Move the equals sign Bar Model / Fraction wall	Harry Jenny isn'ta Use di answe	ys," ys," ays th rams	salwa equiv same show	the sam ent to $\frac{6}{8}$ ount." nd prov	e as $\frac{6}{8} n$ but your	Mrs Gardner says that $\frac{2}{5}=\frac{4}{10}$ Is she right? Convince her by drawing bars. Keanu says "one-third of the shape shown is shaded". Explain why Keanu is incorrect. What mistake might Keanu have made to get one-third?

						Spot the mistake Mrs Tibbles has made: \qquad $\begin{array}{cc} 0.59 & 100 \\ \cline { 2 - 2 } \begin{array}{c} \text { nine tenths } \\ \text { and five } \\ \text { hundredths } \end{array} & \end{array}$ Explain why?
	Shape, space, m Fractional and	asure and sta cimal equival	ic opportunities: s of metres and pou	ds (£)		
4	Recognise and write decimal equivalents to 1/4, 1/2,3/4. Start with 100 squares and writing it over 100	Coins, £l and 1p Counters	Number lines (0100 on top and 0-1 on the bottom) On the diagram below (empty hundred square) shade the following and write the amount shaded as a fraction and a decimal in hundredths: $\begin{aligned} & * \frac{1}{2}+\frac{1}{4}= \\ & * \frac{1}{4}+\frac{14}{100}= \\ & * \frac{3}{4}-\frac{4}{10}= \\ & * * \frac{1}{2}+\frac{2}{10}+\frac{2}{100}= \end{aligned}$	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model *Circle the numbers that are equal to $\frac{1}{2}$ $\begin{array}{crr} 0.12 & 0.5 & 5.0 \\ 0.05 & 0.50 \end{array}$	Tick the two numbers that are equivalent $\mathbf{1}$ 0.25 \square to $\mathbf{4}$ $\quad 0.75$ 2. Complete the set of loop carand pictorial representations.\square \square \square \square \square \square \square \square \square \square	$1 / 2,1 / 4$ and $3 / 4$ can all be written as a fraction with a denominator of 100 . Can they all be written with a denominator of 10 ? Explain why / why not. Alex says: If I know 1/2 is 0.5 as a decimal, I also know $3 / 6$ is equivalent to 0.5 as a decimal. Explain Alex's thinking.

4	Solve simple measure and money problems involving fractions and decimals to two decimal places.	Coins Rulers / Metre sticks / other measurement equipment	Place value charts Number lines	Number sentences Missing numbers Missing symbols GT and LT symbols Move the equals sign Bar Model	Here are three bags in a shop A §11.50 B £14.65 c £ 16.50 How much does bag B cost to the nearest pound? Jamie buys bag A and bag C. How much change does he get from £40? Steven has £30 in his pocket. He gives $1 / 2$ his money to his mum	Some pupils are trying to add up three lengths; $8 \mathrm{~cm}, 0.5 \mathrm{~m}$ and 1.25 m . Jenny says: The total is 1.38 m Taima says: The total is 9.75 m Alicia says: The total is 1.83 m Who is correct? Explain why. Can you explain the mistakes the two pupils that are incorrect have made?

Year 5						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
Objectives running through the unit						
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
5	5F-1 Find nonunit fractions of quantities. Was new in 2020/21. This has previously been covered in Y4 Do a couple of days on this include 4-digit amounts to link into their Y5 division	Counters Objects Hoops, cups or plates for sharing into. Numicon Multilink	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	*Jacob is completing a Lego model comprising of 840 pieces. Jacob is $\frac{2}{5}$ of the way through the build. How many pieces has Jacob used? **Shannon has a litre bottle of orange juice. Shannon has used $\frac{3}{8}$ of the bottle. How many millilitres has Shannon got left? ** Dylon has 1.8 metres of wood to make a shelf. Dylon uses $5 / 6$ of the wood to make the shelf. How many centimetres of wood are left over? **F) Jack buys a sandwich for	The school kitchen needs to buy carrots for lunch. A large bag has 200 carrots and a medium bag has $\frac{3}{5}$ of a large bag. Mrs Rose says: I need 150 carrots so \| will have to buy a large bag. Do you agree with Mrs Rose? Explain your answer.

					£2.75 and a drink for £1.40. Jack spent $3 / 4$ of his money. How much money did Jack have to begin with?	
	2020 Guidance and progression	3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).		5F-1 Find non-unit fractions of quantities.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	
	Shape, space, m Fractions of mea	easure and statis sure where conv	ic opportunities: rsions are needed (/5 of metre, $3 / 4$ of a litre, $5 / 6$	hour)	
5	Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Shading parts of a diagram. (Not always circles or squares.) Fraction wall questions: *A. Put your ruler on the line that splits the two halves. Use this to list all fractions on the wall that are	Number sentences Missing numbers Missing symbols GT and LT symbols Move the equals sign Bar Model / Fraction wall	Shade $\frac{1}{5}$ of this shape. Shade more triangles on this shape so that is $\frac{1}{3}$ shaded	(Holly says, 'One-third of this shape is shaded'. Is Holly correct? Explain how you know. Maisie has a bar of chocolate that has 7 pieces.

			equivalent to 1/2. *B. What do you notice about the denominators of all the fractions that are equivalent to 1/2? *C. List all the fractions that are equivalent to $3 / 4$. *D. Dominic says: "The only equivalent to $2 / 3$ on the sheet is 4/6." Do you agree with Dominic? Explain why / why not. *E. Faith says: "There are 3 equivalents to 4/12 on the sheet." Miley says: "There are 2 equivalents to 4/12 on the sheet."		Karen makes a fraction using two number cards. She says, 'My fraction is equivalent to $\frac{1}{2}$ One of the number cards is 6^{\prime}		Charlie has a bar of chocolate that is the same size as Maisie's but has four pieces instead of seven. Can they eat an equivalent fraction of their bars? Explain your answer.

			Who is correct? Prove your answer **F. Which two fraction groups do not have any equivalent fractions in the diagram? What type of number are the denominators of those two families? **G. What fraction family (not on the sheet) will give me the first fraction equivalent to 1/7 ?		What could Karen's fraction be? Give both possible answers. or	
	2020 Guidance and progression		4F-2 Convert mixed numbers to improper fractions and vice versa.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.		
5	Compare and order fractions whose denominators are all multiples of the	"Cuttable" food items, pizzas, cake, apples. Include noncircular items,	Shading parts of a diagram. (Not always circles or squares.)	Number sentences Missing numbers Missing symbols	Choose numbers for each numerator to make this number sentence true.	Russell says that $\frac{3}{8}$ is greater than $\frac{3}{4}$ because $8>4$. Do you agree?

	same number.	such as cucumbers Paper shapes that can be cut up.		GT and LT symbols Move the equals sign Bar Model / Fraction wall	$\overline{15}>\overline{5}$ Draw diagrams to show that this number sentence is incorrect: $\frac{13}{16}>\frac{7}{8}>\frac{3}{4}$ **Kaci reads $3 / 4$ of her book one night then $1 / 8^{\text {th }}$ of her book the next night. How much of her book did she read in total? How much has she got left to read?	Explain your reasoning. Which is closer to 1 ? $\frac{7}{8} \text { or } \frac{23}{24}$ Explain how you know. Mr Moore thinks three fifths is closer to a half than four tenths. Is Mr Moore correct? Can you prove it calculations? Convince Mr Moore of your answer with some diagrams. **Kyle and Dominic are comparing the two fractions below: $\frac{5}{4} \text { and } \frac{17}{20}$ Kyle says "I don't need to convert 5/4 into twentieths to know that $5 / 4$ is larger than 17/20. Explain how Kyle knows this.
	Shape, space, measure and statistic opportunities: Comparing fractions of length, weight and volume.					

[^0]| | Adding fractional lengths / weights. Finding the perimeter of regular shapes with fractional lengths. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements greater than 1 as a mixed number [for example, $2 / 5$ + $4 / 5=6 / 5=1$
 $1 / 5]$. Pictorial is the most powerful way of embedding pupil's understanding of the concept.
 This was introduced in Y4 as a nonstatutory objective that was covered in 2020/21. Preteach / DA to determine how much they recall and proceed from | "Cuttable" food items, pizzas, cake, apples. Include noncircular items,
 such as cucumbers
 Paper shapes that can be cut up. | Shading parts of a diagram. (Not always circles or squares.)
 Below are six shaded amounts. For each, write the amount shaded as an improper fraction on the left and a mixed number on the right. | | Jamie eats $7 / 8$ of a pizza and Sarah eats $5 / 8$ of a pizza. How much did they eat altogether?
 Give your answer as a mixed number.
 **Insert numerators to make this number sentence correct: $3-5 \quad<\quad \overline{5}$ | Tim has 2 1/2 cakes and Julie has nine quarters of cake. Who has more? Prove your answer.
 **Write 3 improper fractions that are equivalent to 5.
 ***Can you describe the relationship between the denominator and the numerator for all improper fractions that are equivalent to 5 ? |

				fractions and decimals? Now complete the following part-whole models using a mixture of fractions and decimals.		
5	Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.	Coins Rulers / Metre sticks / other measurement equipment (millimetre to metre and millilitre to litre conversions) Thousand diene cube plus hundreds, tens and ones dienes	Place value charts Number lines Two videos from sports, the first showing when hundredths of a second isn' \dagger accurate enough: https://www.yout ube.com/watch ? $\mathrm{v}=01 \mathrm{l}$ CskUlrZE (38secs onwards)	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model If the pupils can say the decimal fraction / number using the correct place value then it will already be in a fraction e.g. $0.3=$ three tenths $=\frac{3}{10}$	An imperial pint is equivalent to 568 ml . Write 568 ml as a fraction of a litre. Complete this equation: $\overline{100}=\frac{600}{1000}=\frac{300}{}$ Miss Palk measures 3 objects: $\begin{aligned} & \text { Pencil }=132 \mathrm{~mm} \\ & \text { Ruler }=30 \mathrm{~cm} \\ & \text { Whiteboard }=0.4 \mathrm{~m} \end{aligned}$	Mrs Powell is looking at the following fraction: $\frac{13}{1000}$ She is trying to find an equivalent with a denominator of one hundred. **Explain why she cannot do this. ***Are there any other amounts of thousandths that cannot be simplified to either hundredths or tenths? How would you describe these numbers?

					8.3 \square ***Look at the statement below: $\frac{457}{1000}<\square<0.8$ How many different 2 decimal place numbers would satisfy the statement?	said, "If I had been in your race, I would have finished fourth out of five". Write what his time could have been. Explain your answer.
5	Round decimals with two decimal places to the nearest whole number and to one decimal place.	Coins Rulers / Metre sticks / other measurement equipment	Place value charts Number lines	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	Barney throws a javelin 16.4 metres on his first attempt and 15.9 metres on his second attempt. What is Barney's combined throwing distance, rounded to the nearest metre. Here are four digit cards. 2 Use each digit card once to make the decimal number nearest to 20 ** Joshua goes to the shop and buys the following items:	Mr Moore has some money in his pocket. If he rounds the amount to the nearest pound, he has $£ 3.00$. What's the least amount of money Mr Moore could have in his pocket? What's the most amount of money Mr Moore could have in his pocket? Explain your two amounts. Leo says: "You can't round 22.01 to the nearest whole number because there's a zero in the tenths column." Explain why Leo is incorrect. ${ }^{* *}$ Can you find 4 different numbers that give the same answer when

5	Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal.	Counters Objects Coins Hundreds, tens and ones dienes Rulers / Metre sticks / other measurement equipment	Place value charts Number lines	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	Label the following on the number line: a. 30\% b. 80% c. 100% d. 25% e. 5% f. 45% Mr Moore has done some percentage to decimal or fraction conversions. Mark his questions with a tick if correct or a cross and correct answer if he's wrong: i. $98 \%=0.98$ ii. $68 \%=86 / 100$ iii. $70 \%=0.07$ iv. $10100=0.01$	Sarah got 75/100 in a long maths test and $8 / 10$ in a short maths. Sarah says My score has gone up 5\% Do you agree with Sarah? Explain your answer. Casey, Matthew and Kieran are trying to share out a cake. Casey would like $30 / 100$ of the cake. Matthew would like 0.45 of the cake. Kieran would like 25% of the cake. Can all three children get what they want? Explain why / why not.

5	Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5$, $2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25.	Counters Objects Coins Hundreds, tens and ones dienes Rulers / Metre sticks / other measurement equipment "Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Place value charts Number lines	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	For each model, write the fraction, percentage and decimal of the cubes that are black.	Which car is the better deal? Explain your reasoning. There are 33 children in Class 6. Adam says, " 50% of the class are girls." Explain why Adam cannot be correct.

(1)

Year 6						
Objectives running through the unit		[EXS] Use written division methods in cases where the answer has up to two decimal places. Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places.				
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
6	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Shading parts of a diagram. (Not always circles or squares.)	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall Write these sets of fractions in the same denominator: A. $\frac{1}{4}$ and $\frac{1}{5}$ B. $\frac{3}{5}$ and $\frac{5}{6}$ C. $\frac{5}{8}$ and $\frac{9}{10}$ D. $\frac{4}{5}, \frac{2}{3}$ and $\frac{1}{6}$ Here is a number line. Draw an arrow to show the position of	Skye and Harley share some cake. Harley eats half of the cake and Skye eats $3 / 5$ of the cake. How much cake did they eat altogether? How much cake is left? Addison and Tegen have been saving some of their pocket money this month. Addison saved $5 / 7$ of his money and Tegen saved $3 / 4$ of her money. Who saved the largest fraction of their money?	Lily, Maisie and Taima want to share a pizza. Lily wants $1 / 3$, Maisie wants $3 / 5$ and Taima wants $1 / 4$. Will one pizza be enough? Explain how you know. https://nrich.maths.org/12935 as a 3star investigation.

	2020 Guidance and progression	3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.			6F-1 Recognise when fractions can be simplified and use common factors to simplify fractions.	
		3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).		5F-1 Find non-unit fractions of quantities.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	
6	Compare and order fractions, including fractions greater than 1.	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers	Shading parts of a diagram. (Not always circles or squares.) Only a fraction of each whole rod is shown.	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	Josh and Laura have identical cars. Josh has used $4 / 7$ of the petrol in his car, Laura has used $5 / 9$ of the fuel in hers. Who has more fuel left in their tank? Miss Goatman ran the length of $23 / 4$ football pitches and Mr Moore ran 2 11/16 lengths of the same pitch.	$\begin{array}{lll} \frac{7}{8} & \frac{23}{24} & \frac{100}{96} \end{array}$ Which fraction is the closest to 1 ? Explain your reasoning.

		Paper shapes that can be cut up.	Using the given information, identify which whole rod is longer. Explain your reasoning.		Who ran further?	
	2020 Guidance and progression	3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).		5F-1 Find non-unit fractions of quantities.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	
		3F-3 Reason about the location of any fraction within 1 in the linear number system.	4F-1 Reason about the location of mixed numbers in the linear number system.		6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.	
6	[EXS] Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Shading parts of a diagram. (Not always circles or squares.)	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	Skye and Ashley are painting a room. Skye brings along $31 / 2$ litres of paint and Ashley brings $42 / 3$ litres of paint. How much paint do they have altogether? Faye, Harley and Cory are wrapping a present. If Faye has $21 / 2$ lengths of paper, Harley has $31 / 3$ lengths and Cory has $41 / 4$ lengths. Do they have enough to wrap a present requiring 10 lengths?	A teacher wants to share some pencils between 2 groups of children, offering one group 3/4 and the other $2 / 5$ of the pencils. Explain how you could add the fractions to show this is not possible.

					A tank has 82 3/4 litres of water. 24 4/5 litres were used and the tank was filled with another $183 / 4$ litres. What is the final volume of water in the tank? Give your answer as a mixed number and as an improper fraction. **The school measures out a new extension for the meadow. The meadow is a rectangle $2 / 9 \mathrm{Km}$ wide and $\mathrm{Km} \mathrm{3/4} \mathrm{long}$. What is the perimeter of the extension?	
6	[EXS] Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=$ 1/8].	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Shading parts of a diagram. (Not always circles or squares.)	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	In each number sentence, replace the boxes with different whole numbers less than 20 so that the number sentence is true. Shyan has a bar of chocolate. She gives half of it to Jago. Jago then gives $1 / 6$ of his part to Mr Moore. How much of the whole bar does Mr Moore receive?	Jake cuts a pizza into equal slices. Harley takes one of Jakes pieces and then cuts that into equal slices. If one of Harley's slices is one-twelfth of the whole pizza how could Jake and Harley have cut the pizza?

	Shape, space, measure and statistic opportunities: Calculating area rectangles with fractional measurements.					
6	[EXS] Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6]$.	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Shading parts of a diagram. (Not always circles or squares.)	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	In this circle, each shaded part is $\frac{1}{5}$ of the area of the circle. The two white parts have equal areas. What fraction of the circle is one of the white areas?	Explain, using visual representations, why: $2 / 3 \div 4=1 / 6$
6	[EXS] Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8].	"Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cutup.	Shading parts of a diagram. (Not always circles or squares.) Diagrams that have multiple objects.	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model / Fraction wall	Part of this number line is shaded. Circle all the numbers below that belong in the shaded part of the number line. 1.1 1.4 $1 \frac{1}{3}$ $1 \frac{1}{5}$ Join each fraction to the correct decimal card. The first one has been done for you.	If you know that: $\frac{5}{11}=0.454545 \ldots$ Explain how you can use this to find a fraction equivalent of: $0.0454545 \text {... }$

6	[EXS] Solve problems which require answers to be rounded to specified degrees of accuracy.	Counters Objects Coins Hundreds, tens and ones dienes Rulers / Metre sticks / other measurement equipment	Place value charts Number lines	Number sentences Missing numbers Missing symbols Move the equals sign Bar Model	Some children work out how much money two shopkeepers get from selling fruit. They use pie charts to show this. Mr Adams Mrs Binns gets $£ 350$ selling bananas. Estimate how much she gets selling oranges. A bus company has 62 minibuses. On average, each minibus travels 19 miles on a gallon of fuel and goes 284 miles each day. The Company says it needs about 1000 gallons of fuel every day. Approximate these numbers and make an estimate to show whether what the company says is about right. You must show how you got your answer.

6	[EXS] Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.	Counters Objects Coins Hundreds, tens and ones dienes Rulers / Metre sticks / other measurement equipment "Cuttable" food items, pizzas, cake, apples. Include noncircular items, such as cucumbers Paper shapes that can be cut up.	Place value charts Number lines	Number sentences Missing numbers Missing symbols GT and LT symbols Move the equals sign Bar Model	This model is made with 20 cubes What percentage of the cubes in the model is black? A cat sleeps for 12 hours each day. 50% of its life is spent asleep. Write the missing percentage. A koala sleeps for 18 hours each day. ? \% of its life is spent asleep	Liam did a survey of 55 people to see how many were left-handed. Liam says, 'The results show that exactly 10% of the people in the survey are lefthanded.' Explain why Liam cannot be correct.

Ratio			Definition A ratio is the comparison of two values of the same kind, which may be written as a to b, a : b or as a fraction a / b. Ratios may have more than 2 terms e.g. A:B:C		Vocabulary Ratio Relative size Scaling Unequal sharing Simplified ratio Fractional equivalent	Structure
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
6	[EXS] Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison.	Counters Objects Coins	Percentages of amounts shaded	Find these percentages of amounts: *A. 20% of 420 *B. 75% of 320 *C. 80% of 500 *D. 15% of 80 *E. 3% of 1200 *F. 11% of 50 *G. 32\% of 150 *H. 65% of 660 *I. 125% of 48 *J. 98% of 250	250000 people visited a theme park in one year. 15% of the people visited in April and 40\% of the people visited in August. How many people visited the park in the rest of the year? The pie chart shows the Year groups of children at Woodland Infant School. There are 56 children in Year 1. How many children are there in Reception?	Liam did a survey of 55 people to see how many were left-handed. Liam says, 'The results show that exactly 10% of the people in the survey are left-handed.' Explain why Liam cannot be correct.

				Here is a flag: The hexagon takes up 20% of the flag What is the area of the hexagon?	
6	Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.	Ratios of objects	$0 \% 0 \% 0 \%$ For every two blue flowers there are__ pink flowers. For every blue flower there are __ pink flowers. $\text { The ratio of red counters to blice counters is } \square: \square$ The ratio of rod counters to ble counters is The rato of blue counters to red coumters is	David and his friends prepare a picnic. Each person at the picnic will get: > 3 sandwiches > 2 bananas > $\mathbf{1}$ packet of crisps The children pack 60 sandwiches. How many bananas do they pack? There are 40 children in the lunch queue, including Nik. Nik says,	Tick the correct statements There are two yellow tins for every three red tins. There are two red tins for every three yellow tins. The ratio of red tins to yellow tins is 2 : 3 The ratio of yellow tins to red tins is 2 : 3 Explain which statements are incorrect and why.

					'There are twice as many children in front of me as there are behind me'. How many children are in front of Nik?	
6	Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	Unequal sharing of counters between two or more groups.	Share the squares below in the ratio $2: 3$	Share 600 in the ratio 3:5 Andy writes a ratio equivalent to 4:5. One of Andy's numbers is 64 . What could the other number be? Could you give both possible answers?	Sapna makes a fruit salad using bananas, oranges and apples. For every one banana, she uses 2 oranges and 3 apples. Sapna uses 24 fruits. How many oranges does she use? A gardener plants tulip bulbs in a flower bed. She plants 3 red bulbs for every 4 white bulbs. She plants 84 bulbs altogether. How many white bulbs does she plant? **Mary, Kate and Ashley share some money in the ratio 7:3:2. If Ashley receives £28, how much does Mary receive? How much money was shared out in total?	Dylon, Jack and Jacob are trying to share out some PS5 games in the ratio 3:4:5 There are 90 games to share out. Can the 3 complete the task? Explain why / why not.
6	Solve problems involving similar shapes where the scale factor is known or can be found.	Congruent shapes, including irregular shapes		Draw the shape below, scaled by a ratio of 1:3.	${ }^{* *}$ Amber has a square patch of grass in the middle of a patio, as in the diagram below:	* Ben says "I scaled the hexagon on the left by a factor of two to get the shape on the right". Do you agree with Ben's drawing?

[^0]: Shape, space, measure and statistic opportunities:

