Area of Maths = Measurement

Definition: "Use of

standard units to determine size or quantity in regard to length, breadth, height, area, mass or weight, volume, fluid volume, capacity, temperature and time."

From Jenny Eather's A Maths Dictionary for Kids
http://www.amathsdi ctionaryforkids.com

Metric Vocabulary:

Length / Height

Millimetre (mm), Centimetre (cm), Metre (m), Kilometre (km)

Area

Square centimetre (cm^{2}) Square metre (m²)

Volume

Cubic centimetre $\left(\mathrm{cm}^{3}\right)$, Cubic metre (m^{3})

Mass / Weight
Milligram (mg), Gram (g), Kilogram (kg), Tonne (t)

Capacity

Millilitre (ml), Litre (I)

Temperature

Celsius (${ }^{\circ} \mathrm{C}$)

Time

Second, Minute, Hour, Day, Week, Month, Year, Decade Century

Metric Conversions:

Length / Height

10 millimetres $=1$ centimetre, cm 100 centimetres $=1$ metre, m 1000 metres $=1$ kilometre, km

Mass / Weigh

1000 milligrams = 1 gram, g 1000 grams $=1$ kilogram, kg 1000 kilograms $=1$ tonne,

Capacity

1000 millilitres $=1$ litre, I or L

Time

1 minute $=60$ seconds
60 minutes $=1$ hour
1 day $=24$ hours
7 days $=1$ week
1 Year $=12$ months ≈ 52 weeks
1 Year $=365$ days (366 in a leap year)
1 Decade $=10$ years
1 Century $=10$ decades $=100$ years.

Imperial Vocabulary:

Length / Height

Inch, Foot, Yard, Mile
Mass / Weight
Ounce, Pound, Stone
Capacity
Pint, Gallon

Imperial to metric approximations

Imperial unit	Metric
1 inch	$\approx 2.5 \mathrm{~cm}$
1 foot	$\approx 30 \mathrm{~cm}$
1 yard	$\approx 91 \mathrm{~cm}$
1 mile	≈ 1.6 kilometres
1 ounce	≈ 28 grams
1 pound	≈ 454 grams
1 stone	≈ 6.4 kilograms
	$\approx 568 \mathrm{ml}$
1 pint	

Declarative knowledge

Measurements	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	What the day is today, what it was yesterday and what it'll be tomorrow.	Value of monetary coins and notes on sight. Recall days of the week and months of the year. The time in o'clock and half-hour intervals.	Units of measure for length / height (cm / m), weight (g / Kg), capacity (ml / l) and temperature (${ }^{\circ} \mathrm{C}$). The symbols of pounds (£) and pence(p). Know the number of minutes in an hour and the number of hours in a day. The time in 5 minute intervals.	How to find the perimeter of simple 2D shapes. The number of seconds in a minute and the number of days in each month, year and leap year. Read time to the nearest minute. Roman Numerals to XII.	$\begin{aligned} & 1 \mathrm{~cm}=10 \mathrm{~mm} \\ & 1 \mathrm{~m}=100 \mathrm{~cm} \\ & 1 \mathrm{~m}=1,000 \mathrm{~mm} \\ & 1 \mathrm{~km}=1,000 \mathrm{~m} \\ & 1 \mathrm{~kg}=1,000 \mathrm{~g} \\ & 11=1,000 \mathrm{ml} \end{aligned}$	Formula for finding the perimeter and area of squares and rectangles.	Formula for the area of a parallelogram. Formula for the area of a triangle. Formula for the volume of a cuboid (including cubes).

Year 1						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
1	Measure and begin to record time (hours. minutes, seconds). Compare, describe and solve practical example, quicker, slower, earlier, later].	Clocks Watches Stopwatches	Images of clockfaces: $\left(\begin{array}{ll} { }^{10^{12}} & 1 \\ -9 & 2 \\ -8 & 7 \\ 7 & 5 \end{array}\right)$		Swimming Pool At what time does the pool open?	Is Alex correct? Explain your reasoning. The time is 3 o'clock Can you spot Amir's mistake?

1 | Sequence events in |
| :--- |
| chronological order |
| using languge [for |
| example, before and |
| after, next, first, today, |
| yesterday, tomorrow, |
| morning, afternoon |
| and evening]. |
| Tell the time to the hour |
| and half past the hour |
| and draw the hands on |
| a clock face to show |
| these times. |

1	Measure and begin to record lengths and heights. Compare, describe and solve practical problems for lengths and heights [for example, long or short, longer or shorter, tall or short, double or half].	Measuring apparatus (Metre sticks, rulers) Multilink cubes to use as a standard unit of length	Questions that involve images for comparison, such as: Use the words taller and shorter in the sentence stems to compare the height of the man and the boy. The man is \qquad than the boy. The boy is \qquad than the man.	Questions without images for comparison, such as: Draw a line in your book that is longer than your pencil. Then draw a line that is shorter than your pencil. List five things in the classroom that are taller than you. List five items that are shorter than you.	 Put the four towers in order from tallest to shortest.	Rosie, Alex and Mo are comparing the height of Mrs Rose and Jack. Can you improve their sentences to make them more accurate?
1	Measure and begin to record mass/weight. Compare, describe and solve practical problems for mass or weight [for example, heavy or light, heavier than, lighter than].	Scales	Questions that involve images for comparison, such as: The \qquad is heavier than the \qquad The \qquad is lighter than the \qquad The \qquad is equal to the	Recording weights	Mrs Gardner has put four objects in order, starting with the lightest. 1. A feather 2. A car 3. A book 4. A table Can you spot Mrs Gardner's mistake?	"I'm thinking of an object. It is heavier than a pencil, but lighter than a dictionary." What object could Jack be thinking of? Prove it. How many objects can you think of?

					Can you re-write the list correctly? How many cubes does the teddy bear weigh? Explain how you know.	Who do you agree with? Explain why.
1	Measure and begin to record capacity and volume. Compare, describe and solve practical problems for capacity and volume [for example, full or empty, more than, less than, half, half full, quarter].	Measuring jugs, beakers, cups Give children the opportunity to explore practically using water or sand. Show me full containers. Show me empty containers. Show me almost full. Show me almost	Images showing volume of liquids	Recording volume	It takes 5 How many \square will it take to fill 2 buckets? What about three buckets? Four buckets? What do you notice? Can you continue the pattern?	Whitney pours her cups into the bottle and they fill it exactly. She says the bottle has a capacity of four cups. Do you agree?

		empty.				
1	Recognise and know the value of different denominations of coins and notes.	Coins and bank notes.	Images of coins and notes	What am I? I am silver. I have 7 edges. have the picture of Britannia next to a lion on me.	How many 1p coins would you need to make 20p? How many $2 p$ coins would you need to make 20p? How many other ways can you make 20 p using the same coins? Match each coin to the correct box. One has been done for you.	Sally says: The silver coin must be worth more because it is bigger than the gold coin. Do you agree?

Year 2						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
2	[EXS] [KEY] Tell and minutes, including quarter past/to the hour and draw the hands on a clock face (Drip feed all year!) \qquad minutes in an hour and a day.	$\begin{aligned} & \text { Clocks (mini i } \\ & \text { and large) } \end{aligned}$	Clock faces Timetable of events to order Draw the hands on these	Word problems with no images. \qquad \qquad \square \qquad \square	Write the time... 1 hour before \qquad	

2	[EXS] Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; eapacity (litres/mil) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using symbols for greater than, less than and $=$.	Weighing scales Balancing scales	Pictorial Scales Testbase Questions with pictures ITP What is the mass of this bear?	Testbase Questions with no pictures Greater than, less than, equals symbols	-. Jack measures the mass of some fut Look at these signs. Write the correct sign in each box mass of the banana \square mass of the pear mass of the apple \square mass of the banana mass of the apple \square mass of the pear 5 Milly needs 100 grams of flour. How much more flour does she need to add to the bowl?	Which object is lighter, a car or a cube? How do you know? Tiny uses scales to find the mass of a cube in grams. Do you agree with Tiny? Why?

2	[EXS] Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using symbols for greater than, less than and $=$.	Measuring Vessels Liquids	Pictorial Scales Testbase Questions with pictures ITP How much water is in this container?	Testbase Questions with no pictures Greater than, less than, equals symbols	Sahil, Marta \& John have 700 ml of pop between them. Sahil and John drink the same amount. Marta has 100 ml more than Sahil and John. How much do they all drink? Sort the glasses from least full to most full. most full These 3 bottles each have more than 20 ml of water in but less than 50 ml . The green bottle has 5 ml more than the red bottle. The blue bottle has 10 ml more than the green bottle. How much could each bottle have in?	Here are two cups of water. A B Do you agree with Tiny? Why? Mo and Sam both think that they have shown 6 litres of water in the barrel. Mo Sam What mistakes have they made? Talk about it with a partner.

2	[EXS] [KEY] Choose and use appropriate standard units to estimate and measure tength/height in any direction (m/cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); eapacity (litres/mil) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels.	Thermometer s Different temperature items/liquids Containers	Pictorial Scales Testbase Questions with pictures ITP What temperature is the classroom? $\begin{array}{r} -100 \\ -\quad 80 \\ -\quad 60 \\ -\quad 40 \\ 20 \\ 0 \\ -20 \end{array}$	Testbase Questions with no pictures Greater than, less than, equals symbols	Look at the thermometers to answer the questions below. Which of these thermometers shows the coldest temperature? What is the difference between temperature A + C? How much warmer is thermometer C than B ?	Sam measures the temperature at 1 pm and at 5 pm . There is a difference of $7^{\circ} \mathrm{C}$. What could the temperatures be? Compare answers with a partner. Draw arrows to estimate where each temperature belongs on the thermometer. $99^{\circ} \mathrm{C}$ $47^{\circ} \mathrm{C}$ $67^{\circ} \mathrm{C}$

2	[EXS] [KEY] Find different combinations of coins that equal the same amounts of money. Recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value.	Coins Purses Price Tags	Coins Price Tags BINGO cards	Simple number sentences using + and £ and p symbols.		Tiny has this money. Max has the same amount of money as Tiny. What coins could Max have in the money box? Compare answers with a partner. Mo has some money. What is the fewest number of coins that Mo could have? How do you know?

Year 3

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
3	Estimate and read time with increasing accuracy to the nearest minute. Record and compare time in terms of seconds, minutes and hours. Use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. Compare durations of events [for example to calculate the time taken by particular events or tasks]. [KEY] Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks. Moved in 2023-24 due to teaching whole class PPA cover.	Setting the time on the clock. Reading the time on a given clock. Timing races. How long does It take to write your name 10 times? Will it take Caitlyn less or more time than Sam?		\qquad Ally frished a minutes 50 How long did Ally take? \square These are all times on the same maming 7.56 am \qquad six rinutes to eigh half past seven \qquad \qquad	Holly takes half an hour to walk home from school. She arrives at school at 8:25 am. At what time did she leave home?	The minute hand is on the 4 and the hour hand is just past the 7. It is 20 minutes to 8 . True or false? Explain your answer. - My birthday is in a month which has less than 31 days. What months could my birthday be in? - Sue has completed this table for her homework. Her writing is in black. Has she made any mistakes? Correct any you find. $>$ Jen says the time is around 43 minutes past 5. True or false? Explain your answer.

3	[KEY] Measure, compare, add and subtract: lengths ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$); mass (kg,g); volume, capacity (l,ml). Metres first, then centimetres and the millimetres. Measure the perimeter of simple 2-D shapes.	Measure meters outside in the playground. How wide are the goal posts? How tall is the climbing wall? What is the perimeter of the playground? Of the greenhouse? Of the Huff and puff shed?			Jay is measuring the perimeter of his maths book. The width is 21 cm and the length is 30 cm . What will the other sides measure? What will the total perimeter be?	Ameer measures the length of 3 different cars. The smallest car measures 3 m in length and the largest measures 5 m in length. What could the length of the middle sized car be in centimetres? Mrs Welch is measuring the length of her car. She has decided to measure in metres. Is this the most suitable unit of measure to use? Explain how you know. \qquad \qquad \qquad
3	[KEY] Measure, compare, add and subtract: lengths (m,cm,mm); mass (kg,g); volume, capacity (l,ml).	Scales and various objects to weigh. Can pupils estimate weights of objects? Can the say whether one object is lighter or heavier than another?		Compare, Add and Subtract Mass 1.) $1 \mathrm{~kg} \cdot 5 \mathrm{~kg}=$ 2.) $110 \mathrm{~g}+120 \mathrm{~g}=$ 3.) $400 \mathrm{~g}-150 \mathrm{~g}=$ There are 1000 g in 1 Kg How many grams would there be in 5 K Mrs Welch needs $\frac{1}{2} \mathrm{~kg}$ of sugar. How many grams will this be?	Compare, Add and Subtract Mass Mary 3 friends' pencil rases: Mary $\quad 240 \mathrm{~g}$ Aals $\quad 300 \mathrm{~g}$ David $\quad 410 \mathrm{~g}$ 1.) How much heavier is Ali's pencil case compared with Mary's case? 2.) What is the total mass of all 3 pencil cases?	Compare, Add and Subtract Mass Crig and Bille are both baking some cup cakes. Craig's bag of flour has a mass of: 400 g Billie's bag of flour has a mass of: 900 s Craig says that his bag of flout has half ot the mass of Billie's bag. s Craig correct? Explin your arswer.

Year 4

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
4	Read, write and convert time between analogue and digital 12 - and 24-hour clocks. (Teach first then drip feed all year!)	Clocks (teaching clocks and online clocks)	Write the time shown on the clock in digits and words:	Grace says, 'On my clock face, the big hand is on the 4 and the little hand is between the 8 and the 9' What is the time on Grace's clock face?	These are the radio programmes one morning. 7.00 Music show 7.55 Weather report 8.00 News 8.15 Travel news 8.25 Sport 8.45 Holiday programme Josh furns the radio on at 8:05 How many minutes does he have to wait for the Travel news? Sanaa says, 'On my Roman Numeral clock face, the big hand is on the VI and the little hand is between the IX and the X ' What is the time on Sanaa's clock face?	Do these events happen in the a.m. , p.m. or both? Write your answer next to each event: - Coming home from school - Eating your breakfast - Having a shower - Going to bed - Brushing your teeth - Going shopping - The sun coming up - The sun going down Mr Moore is trying to complete the boxes for the time shown on the analogue clock.

4	Solve problems involving converting from hours to minutes: minutes to seconds; years to months; weeks to days. Drip feed this all year			Complete the sentences: There are \qquad seconds in a minute. There are \qquad minutes in an hour. There are \qquad hours in a day. There are \qquad months in a year.	Write the missing numbers.	
4	[KEY] Convert between different units of measure [for example, kilometre to metre; hour to minute]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when doing the time objectives.	Rulers Metre sticks Trundle wheels Measuring jugs Scales Clocks (analogue and digital) Cutting objects to specific sizes.	Here are a pencil sharpener, a key and a rubber. What is the length of all three objects, rounded to the nearest centimetre?	$1 / 2$ a metre $=? \mathrm{~cm}$ 0.3 metres $=? \mathrm{~cm}$ 0.45 metres $=? \mathrm{~cm}$ $1 / 4$ of a metre $=? \mathrm{~cm}$ 0.05 metres $=? \mathrm{~cm}$ $3 / 100$ of a metre $=\mathrm{cm}$	Mr Tyler is 1 m 97 cm tall. His young daughter is 83 cm tall. What is the difference in their heights	

						other and the same perimeter as each other" Is Sam correct? Explain how you know.
4	[KEY] Convert between different units of measure [Grams to Kilograms]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when doing the time objectives.	Scales Weights	The large dog weighs 9kg One of the smaller dogs weighs 4800 g What is the weight, in grams, of the other small dog?	Complete this table, the first two have been done for you.	Half a kilogram of flour makes 4 cakes. How many grams of flour are there in one cake? Senna and Roanna each have a parcel. Senna's parcel weighs $11 / 4 \mathrm{~kg}$. Roanna's parcel weighs $1,800 \mathrm{~g}$ How many more grams does Roanna's parcel weigh than Senna's parcel?	Max has a magical gold bar. Every day the gold bar trebles in weight. On day one the bar weighs 8 grams. What will be the weight of the bar on day two? What will be the weight of the bar on day four? How many days will it take for the bar to weigh more than two kilograms?
4	[KEY] Convert between different units of measure [Litres and Millilitres]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when	Measuring jugs Scientific syringes Liquid containers	Measuring images:	Complete this conversion table, the first two have been done for you.	This jug holds $1 / 2$ a litre.	Miss Tonkin's water butt is leaking. Every day the water butt leaks half the water in it. On day one there's 32 litres in the water butt. How many litres are there on day two? How many litres are there on day three?

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
Estimate, compare and calculate different measures, including money in pounds and pence. \\
Teach money part only, the rest of these will be covered with the length / mass / volume objectives.
\end{tabular} \& \begin{tabular}{l}
Rulers \\
Metre sticks \\
Trundle \\
wheels \\
Measuring \\
jugs \\
Scales \\
Coins \\
Bank notes
\end{tabular} \& \begin{tabular}{l}
How much money is in each jar ? \\
A \\
Which coins would complete this bar model? \\
\(£ 1.60\) \\
You can use coins more than once
\end{tabular} \& \begin{tabular}{l}
Calculate the missing numbers:
\[
\begin{aligned}
\& 6 \times ?=£ 1.80 \\
\& ? \times 7=£ 1.40
\end{aligned}
\] \\
Two of these sentences could be true. \\
Tick (\(\sqrt{ }\)) the two sentences that could be true. \\
- Adam's pencil is 12 centimetres long. \\
- Leah is 12 metres tall. \\
- Jake's glass holds 12 litres of milk. \\
- Kate's younger sister weighs 12 kilograms.
\end{tabular} \& \begin{tabular}{l}
Complete the bar model for the problem. \\
Bobby goes to the shopping centre. He spends \(£ 10.80\) on a new pair of shorts and \(£ 12.50\) on a sweatshirt. How much money does he spend altogether?
\(\square\) \\
The table below shows the ticket prices for the theatre: \\
Arnold and Esther do a sponsored run for charity. They run \(6,000 \mathrm{~km}\) altogether. Esther runs double the distance that Arnold runs. How many kilometres does each person run? \\
Comparing measures \\
What sign would you use? Explain your answer? Create your own using <> =

\end{tabular}

\hline
\end{tabular}

Year 5						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
Objectives running through the unit		Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.				
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
5	Solve problems involving converting between units of time.	Digital and analogue clocks (Link Roman Numerals in where possible) Calendars Timetables	Images of clocks, calendars and timetables.	60 months =? years 72 hours $=$? days ? weeks $=84$ days Complete each sentence using a number from the list below. $\begin{array}{lll} 120 & 240 & 600 \\ & 1,440 \\ 3,600 & 6,000 \end{array}$ There are \qquad seconds in an hour. There are \qquad minutes in a day.	Isabella swims 4 lengths of a swimming pool. Her target is to swim the lengths in under 5 minutes. It takes her 319 seconds. Explain why Isabella did not achieve her target. Cody runs for 25 minutes on Monday, 1:10 on Tuesday and three-quarters of an hour on Wednesday. How much time did he spend running over the three days?	At Roche CP School a school year has 38 weeks of 5 days. Mr Moore thinks that in a non-leap year a child will have over 200 days off. Is he correct? Prove your answer.
5	[KEY] Convert between different units of metric measure (kilometre and metre; centimetre	Rulers Metre sticks	Pictorial images of : Rulers Metre sticks	Conversion tables PV charts for $\mathrm{X} \div$ by powers of 10		True or false: 1 metre $=1000$ centimetres.

5	[KEY] Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.	Objects that can be measured and combined to make rectilinear shapes e.g. tables, the quad.	Images of rectangles, squares and composite rectilinear shapes.		What is the rectilinear 15 cm	er of this composite	Alfie has some rectangles. He makes this shape using three of the rectangles. Alfie says: The perimeter of the new shape will be 3 times as big as the single rectangle. Explain why Alfie is incorrect.

				Here is a square inside another square. The perimeter of the inner square is 16 cm . The outer square's perimeter is four times the size of the inner square. What is the length of one sides of the outer square? How do you know? What do you notice?	
[KEY] Convert between different units of metric measure (gram and kilogram).			Conversion tables.	\square Activity 3 : I am cooking some rice. The recipe says I need 120 g for two people. How many kilograms would I need if I am cooking for 8 people? Here is a scale with some large and small bricks on:	Captain conjecture says: I think that 5 Kg is equal to 500 g . Do you agree?

				How many kilograms of pasta does he need for 12 people?	Explain why / why not.
[KEY] Convert between different units of metric measure (litre and millilitre).		All the water in these two containers is to be poured into the empty container below.	Conversion tables.	A bottle holds 1 litre of lemonade. Rachel fills five glasses with lemonade. She puts 150 ml of lemonade in each glass. How many millilitres of lemonade is left in the bottle? Cola is sold in bottles and cans.	

			Draw where the water level will be in the container.		Alex buys 5 cans and 3 bottles. She sells the cola in 100 ml glasses. She sells all the cola. a) How many glasses does she sell? Alex charges 50 p per glass. b) How much profit does she make?	
5	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	Measuring implements with metric and imperial measuremen ts. Inch-cm rulers Litre-pints measuring cups / jugs g/kg - lbs/ozs weighing scales.	Images of measuring implements with metric and imperial measurements. Inch-cm rulers Litre-pints measuring cups / jugs g/kg - lbs/ozs weighing scales. Conversion graphs	Conversion tables	Victoria buys 4 pints of milk. Give the volume of milk Victoria bought in millilitres and litres. This thermometer shows temperatures in both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$. Work out what $25^{\circ} \mathrm{C}$ is in ${ }^{\circ} \mathrm{F}$	Mr Moore has 2 pounds of jam and Miss Goatman has 1 kg of jam. Who has more jam? Prove your answer. Isaac has 9 feet of rope. He is constructing a wall border that is $\mathbf{3}$ metres in length. Isaac says: "I need at least another metre of rope." Do you agree with Isaac? Explain your reasoning.
5	[KEY] Calculate and compare the area of rectangles (including squares), and including using standard units,	Objects that can be measured and combined to	Images of rectangles, squares and composite rectilinear shapes.	Calculate the area of these shapes:	Can you draw (not to scale) the following shapes with an area of $64 \mathrm{~cm}^{2}$. a. A square.	Sarah wants to paint a wall that is 12 metres long and 5 metres high. She has two tins of paint that will each cover 24 m 2 .

				The \qquad of a shape is the sum length of all its sides. There can only be \qquad possible ways of constructing a rectangle with an area of 13 squares because 13 is a \qquad The number of different rectangles that can be constructed for a given area is dependent on the number of \qquad that number has. When constructing rectangular areas some rectangles will look the same. This is because rectangles are like multiplication \qquad \qquad and multiplication is \qquad _.		
5	Estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water].	Dienes Empty containers Empty jugs / cups	Images of cubes and cuboids Images of containers partially filled.	This cuboid is made from centimetre cubes.	Circle the correct amount A tea cup is likely to hold about	

Year 6									
Year group:	NC L.O.	Practical	Pictorial	Abstract				Problem Solving	Reasoning
Objectives running through the unit									
6	[EXS] [KEY] Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.	Rulers Metre sticks Trundle wheels Weighing scales / balances Measuring cups / jugs Analogue and digital clocks / watches.	Pictorial images of : Rulers Metre sticks Trundle wheels Weighing scales / balances Measuring cups / jugs Map scales Analogue and digital clocks / watches.	Wha hours	$\stackrel{\pi}{\stackrel{0}{0}}$ 1 444 m nd min	 252 inutes utes?	səュəә!!!!!	Mr Moore enters a 2 km race but only manages to run $1 / 4$ of the distance. How many metres does he run? Miss Goatman ran 5km on Saturday and $2,400 \mathrm{~m}$ on Sunday. Mr Moore ran 6.3 km on Saturday and 730 m on Sunday. How far did Mr Moore and Miss Goatman run this weekend in total? Give your answer in kilometres. Tom is cooking some pasta. The recipe says he needs three hundred and fifty grams of pasta for 4 people. How many kilograms of pasta does he need for 20 people?	Faye measures the length of the classroom to be $13,128 \mathrm{~mm}$. Is this the most appropriate unit of measure for that length? How would you write that length? Explain your choice and convert Faye's measurement. Imagine we talked about time using decimals. Would 2.3 hours be: 2 hours and 3 minutes 2 hours and 20 minutes 2 and a half hours, or 2 hours and 18 minutes? Explain your decision.
6	[EXS] [KEY] Solve problems involving the calculation and conversion of units of	See above.							

					Which two shapes have the same perimeter as shape A?	The\%20Tetris\%20pa ving\%20conundrum Tetris\%203\%20Star. docx The\%20Tetris\%20pa ving\%20extension.d
6	Calculate the area of parallelograms and triangles.	Large, plastic Meccano (In DM's room) Maths shapes	Images of triangles and parallelograms, including all types of triangle.	*Find the area of these parallelogran A. ${ }^{\mathrm{s}} \mathrm{m}$ \square B. ${ }^{\mathrm{sem}}$ \square \square c. Find the area of these triangles:	*On your desk there are some Post-it notes. - Stick one in your book. - Measure the base and height. - Round these measurements to the nearest centimetre. - Use the rounded measurements to calculate an estimated area of the Post-it note. *Now do the following: - Cut a straight line at an angle across the Post-it note. - Put the two straight ends together to create a parallelogram. *Has your shape changed? *Has the perimeter changed? *Has the area changed?	Here is a company logo consisting of three identical parallelograms. The total area of the logo is $108 \mathrm{~cm}^{2}$ and the base and height of each parallelogram is a whole number. List all possible values for the base and height of one parallelogram. Look at all the possible combinations for the length and base of one parallelogram in the previous question. Which combination do you think would fit best for the parallelograms in the logo? Explain your answer.

					*Take another Post-it and make two cuts from adjacent corners to an opposite length What shapes do you have now? Can you calculate the area of the larger shape? Combine the two smaller shapes. Do you notice anything? **The diagram shows 4 identical shaded triangles in a rectangle. The rectangle measures 36 centimetres by 24 centimetres. Calculate the area of one shaded	
6	Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and	Dienes Multi-link cubes Cubes and cuboids	Images of cubes and cuboids, including composite 3D shapes.		Cleo has 24 centimetre cubes. She uses all 24 cubes to make a cuboid with dimensions $\mathbf{6 c m}, 2 \mathrm{~cm}$ and 2 cm .	Can you find two or more different cuboids each with a volume of 64 cm3? What's the same and what's different about your cuboids?

extending to other units
[for example, mm3 and
km3].

					Not actua Calculate the width of the cuboid.	
6	Recognise when it is possible to use formulae for area and volume of shapes. Can be covered in algebra	Dienes Multi-link cubes Cubes and cuboids Large, plastic Meccano (In DM's room) Maths shapes	Images of 2D and 3D shapes.	*Match the formula to the corresponding area / volume. The same formula may be used more than once. Base \times Height Volume of a cuboid Base ${ }^{2}$ Area of a rectangle \times Height \times Width Area of a triangle ${ }^{3}$ Area of a parallelogram (Base \times Height) $\div 2$	Write the dimensions of a cuboid that has the same volume as the cube below: Not to scale	 Prove your answer This diagram shows a smaller cube inside a larger cube. The volume of the larger cube is $1000 \mathrm{~cm}^{2}$.

					What is the volume of this special offer box of salt, which is 20% bigger?	The volume of the smaller cube is between 30% and $3 / 4$ of the volume of the larger cube. List all the possible lengths of the smaller cube.

