Area of Maths = Multiplication + Division

Multiplication		Definition: Multiplication is the process of repeatedly adding a number to itself. An array is a set of objects in rows and columns.	Vocabulary: Multiplication, times, lots of, multiples, multiply, groups of, factors, product, repeated addition, array.		Structure: Whole numbers: factor x factor $=$ produc \dagger Decimals / fractions: multiplicand x multiplier $=$ produc \dagger		
Division	Definition sharing things equal	on: Division is an amount of or a number into parts / groups.	Vocabula put into (e divide, div quotient,	Division, share, al) groups, nd, divisor, y.	Structure: KS1: Number / am number in each KS2: Dividend \div	t being shared \div num up or = Quotient	of groups =
Declarative knowledge	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition + Subtraction Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	Double facts up to double $5=10$	Double facts up to 20 Recall multiplication facts for the 10 times table, expressed as 'lots of 10 ' - TTRS in Summer 2	Times table facts (including division facts) for the 10,2 and 5 times table. Multiplication is commutative but division is not.	Times table facts (including division facts) for the 10, 2, 5, 3, 4 and 8 times table. Associated fact multiplications, making one factor 10 times bigger e.g. $4 \times 3=12 \text { so } 4 \times 30=120$	Times table facts (including division facts) for tables up to 12×12. Associated fact multiplications and divisions, making one factor either 10 or 100 times bigger e.g. $\begin{aligned} & 4 \times 3=12 \text { so } 4 \times 30= \\ & 120 \text { and } 4 \times 300= \\ & 1,200 \end{aligned}$ $12 \div 3=4 \text { so } 120 \div 3=$ $40 \text { and } 1,200 \div 3=400$	Times table facts (including division facts) for tables up to 12×12. Associated fact multiplications and divisions, making the factors a combination of 10 , 100, 1,000 or 10,000 times bigger e.g. $\begin{aligned} & 4 \times 3=12 \text { so } 4 \times 30=120,4 \times 300 \\ & =1,200,4 \times 3,000=12,000 \\ & 4 \times 3=12 \text { so } 40 \times 30=1,200,40 \times \\ & 300=12,000,400 \times 30=12,000 \\ & \text { and } 4,000 \times 30=120,000 \\ & 12 \div 3=4 \text { so } 120 \div 3=40 \text { and } \\ & 1,200 \div 3=400 \end{aligned}$ Prime numbers to 19 Powers of 10 as 10^{2} and $10^{3}(100$ $=10^{2}, 1,000=10^{3}$)	Same as Year 5 plus: Correct order of operations (BODMAS)

Year 1						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		

1	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money - $2 p, 5 p$, 10p Dienes (tens) Dice	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign	Sita puts 2 shoes in each of these boxes. How many shoes are there altogether? A shopkeeper has 20 fish and 5 fish bowls. He puts the same number of fish in each bowl. How many fish go in each bowl? How many birds are there altogether? There are \qquad birds in each tree. There are \qquad trees. There are \qquad birds altogether.	Sam says: You would need 28 crayons to fill all three boxes. Is Sam correct? Explain why / why not. Sarah has 6 boxes of 5 crayons. Would this be enough to fill the three boxes above? Dora and Rosie are making hay bundles. Who has made equal groups? I am thinking of a number between 20 and 30. I can only make equal groups of 5 What must my number be? What happens when I try to make groups of 2 with it?

Year 2

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
	On Ave. 6 lessons per objective	Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
2	Recognise the relationships between addition and subtraction and rewrite addition statements as simplified multiplication statements e.g. $\begin{aligned} & 10+10+10+5+ \\ & 5=3 \times 10+2 \times 5 \\ & =4 \times 10 \end{aligned}$ Understanding of the equals sign being a balance is key.	Counters Objects Hoops, cups or plates for showing 'groups' or 'lots of'. Numicon Unifix Money-2p,5p, 10p Dienes (tens) Dice Hands / fingers	Tens frames with different alternating coloured counters to define each number. Pictures of objects and groups. Pictures of practical resources. Arrays Images linked to repeated addition, such as socks, fingers, money	Complete these equations: $\begin{aligned} & 10+10+10=10 \times ? \\ & 2 \times ?=2+2+2+2 \\ & 5+5+5+5=10 \times ? \end{aligned}$		
2	2020 Guidance	2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables.				
2	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix	Pictures of objects and groups. Pictures of practical resources. Arrays Images linked to 2, 5, 10 such as socks, fingers, money	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign Start with the repeated addition of the same number,	Can you draw 14 sweets shared equally into 2 groups? What 2 number sentences can you write for your drawing? Insert a symbol: <ニ>	Spot the mistake:

	White Rose have some really good resource examples for 2's, 5 's and 10 's: https://whiterose maths.com/wpcontent/uploads 2019/SoLs/Prima ry/Autumn2019-20/Year-2-Autumn-Block-4-Number-Multiplication-and-Division.pdf	Money - 2p, 5p, 10p Dienes (tens) Dice Hands / fingers		showing pupils that this can be inefficient as we add more addends and maybe there's an easier way to represent the calculation. $\begin{aligned} & 2+0=2 \\ & 2+2=4 \end{aligned}$ $2+2+2=6$ $2+2+2+2=8$	$9 \times 5 \square 5 \times 9$ $1 \times 10 \square 6 \times 2$ Ben has five marbles. Kemi has seven times that number. How many marbles does Kemi have?	Alex says: "There are 10 equal groups with two in each group. There are ten 2's" Mr Moore says "Every number in the 5 times table is even" Mrs Welch says " Every number in the 2 times table is even" Who is correct? Give some examples to show your answer.
	Shape, space, Year 1: Recogn	asure and sta and know th	opportunities: lue of different den	inations of coins a	tes (Multiples of $2 p, 5 p, 10 p, £ 5$ and $£ 10$ notes)	
2	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. (Try this on its own as well as drip feed)	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money - 2p, 5p, 10p Dienes (tens) Dice	Picłures of objects and groups. Pictures of practical resources. Arrays	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign	Tick or Cross these number sentences if they represent this picture: $12 \div 3=4$ $12 \div 4=3$ Write 4 number sentences for this array:	$\begin{array}{ll} 0 \times 2=0 & 2 \times 0=0 \\ 1 \times 2=2 & 2 \times 1=2 \\ 2 \times 2=4 & 2 \times 2=4 \\ 3 \times 2=6 & 2 \times 3=6 \end{array}$ Can you spot any patterns? I think the next number sentences are $5 \times 2=10$ and $2 \times 5=10$. Am l right? Why? Mr Moore thinks: $12 \div 4$ would give you the same answer as $4 \div 12$. True or False? Prove it!

2	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times) ，division（ \div ） and equals（＝） signs． （Remember to include halves and quarters）	Counters Objects Hoops，cups or plates for sharing into． Numicon Unifix Money－2p，5p， 10p Dienes（tens） Dice	Pictures of objects and groups． Pictures of practical resources． Arrays	Number sentences （Include repeated addition．） Missing numbers Missing symbols Move the equals sign	Can you write 4 different ways of sharing these cupcakes？ Mince pies are sold in boxes of 6 ． How many boxes can be filled using these mince pies？	Mrs Wheeldon thinks this image shows： $12 \div 2=6$ True or False？How do you know？

2	Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. (Run alongside the previous two objectives)	Counters Objects Hoops, cups or plates for sharing into. Numicon Unifix Money - 2p, 5p, 10p Dienes (tens) Dice	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign	Apples are sold in packs of 4 How many packs of apples can be filled using the apples from the tree? Tulips are sold in bunches of 5. Randle buys 30 tulips. How many bunches does he buy? David is hosting a birthday party. He has invited nine children. He will give each child a goody-bag containing ten marbles. How many marbles will he give away in total?	True or False? These all show the same representation. Part of this array is hidden: The total is less than 16. What could the array be?
2	2020 Guidance	2MD-2 Relate g equations (quo	uping problems whe ve division). Year 2 co	e the number of gro cument - Pages 33	is unknown to multiplication equations with a missing	or, and to division
Year 3						

						multiplication with 3 different digits? Give some examples to prove your answer.
3	2020 Guidance	3NPV-4 Divid document, p	into $2,4,5$ and 10 22-25	jal parts, and reac	les/number lines marked in multiples of 100 with 2,	10 equal parts. Year 3
3	Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Counters Objects Hoops, cups or plates for sharing into. Numicon Multilink Dice	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign Bar Model Grid Method	Join each box to the correct number. One has been done for you. half of 98 double 4×4 Alan has 45 beans. He plants 3 beans in each of his pots. How many pots does he need? A shop sells packs of sweets. Each pack has one red sweet and two green sweets.	Tom says: "It will cost over $£ 12$ for 2 adults and 3 children to go to the cinema" Do you agree? Explain why / why not.

					Sam buys some packs so he has 4 red sweets. How many green sweets does he have? On a sheet of stickers there are 5 circles, 2 stars and one rectangle. How many stickers are there altogether on 4 sheets? Nisha needs 55 circles. How many sheets of stickers does she need? Ben has 10 sheets of stickers. How many more circles than rectangles does he have?	
3	2020 Guidance	Year 3 docum	n multiplication an pages 44-46.		ntextual problems with different structures, inclu	titive and partitive division.

Year 4						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
	On Ave. 4 lessons per objective	Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
4	Throughout the year Recall multiplication and division facts for multiplication tables up to 12×12.					
4	2020 Guidance	4NF-1 Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number. Year 4 document, pages 26-29.				

	understand this as equivalent to making a number 10 or 100 times the size. Year 4 document, pages 36-38.			B. $706 \times 10=$ C. $? \times 10=7620$ D. $100 \times 91=$ E. $236 \times 100=$ F. $100 \times ?=4000$	**Jamie draws a square that has sides 6 cm long. What is the perimeter (length around the outside of the shape) in millimetres? ${ }^{* *}$ L. Small matchboxes hold 10 matches and large boxes hold 100 matches. Mr Moore has 45 small and 37 large boxes. How many matches does Mr Moore have in total?	B. $100 \times 50=500$ C. $44 \times 10 \times 10=4,400$ D. $10 \times 305=3,500$ *** Mr Moore has a magic plant that is 32 cm tall. Miss Tonkin also has a magic plant that is 16 metres tall. Mr Moore's plant doubles in size every day. Miss Tonkin's plant halves in size every day. After how many days will Mr Moore's plant be taller than Miss Tonkin's?
	Shape, space, measure and statistic opportunities: Y4 - Converting between millimetres and centimetres / centimetres to metres. We haven't covered this yet but this is a useful context for the objective prior to the measures objectives.					

					1. Joe and Ali were having a reading competition. In one month, Joe read 137 pages. Ali read 3 times as many pages as Joe. How many pages did they read altogether? How many less pages than Ali did Joe read? Use a bar model to help. $\begin{array}{l\|l\|} & \text { Joe } \\ & 137 \\ & \\ & \text { Ali } \\ & 137 \\ \hline \end{array}$ \square	
4	2020 Guidance	4MD-1 Multiply and size. Year 4 docum 4MD-3 Understa	divide whole numbers nt, pages 36-38. d and apply the distri	10 and 100 (keeping to tive property of mu	hole number quotients); understand this as equivalent to mc lication. Year 4 document, pages 44-47.	a number 10 or 100 times the
4	Dividing numbers with up to three digits by a single digit. Includes interpretation of remainders as part of the 2020 guidance.	Counters Objects Plates, hoops or bags that practical objects can be shared into.	Pictures of objects / dienes in groups. Arrays	$\begin{aligned} & * 484 \div 4= \\ & * ?=936 \div 3 \\ & * 606 \div ?=202 \end{aligned}$ ** Complete the bar model below: ** $1 / 2$ OF $260=$ **Find $1 / 3$ of 129 **Find $3 / 4$ of 856 ** $705 \div 5=3 x$	*A car dealer receives a shipment of 414 new cars. These cars are shared out across nine dealerships. How many cars does each dealership receive? ${ }^{* *}$ Write in the missing digit ** Sally has 4 bags of counters. Each bag contains 165 counters. Sally empties all the bags out and then divides all the counters into five equal piles. How many counters are there in each pile? ***A shop has 500 footballs. The shop can buy bags that will hold 2 balls, 3 balls, 4 balls.... All the way up to 9 balls	** Miss Tonkin is trying to calculate 949 divided by 4. Explain why this calculation will not give you a whole number quotient. ***In the calculation on the right the letter P stands for a digit between 1 and 9 and the letter N also stands for a digit between 1 and 9 . What could P and N be? Is there more than 1 combination?

					If I want to split the balls equally with no balls left over. Which bags could I buy?	
4	2020 Guidance	4NPV-4 Divide 1 document, pag 4NF-2 Solve divis remainders appr	00 into $2,4,5$ and 10 21-25. n problems, with two oriately according to	qual parts, and read ligit dividends and on he context. Year 4	ales/number lines marked in multiples of 1,000 with 2, -digit divisors, that involve remainders, for example: 7 ument, pages 29-32.	and 10 equal parts. Year 4 $=8 \text { r } 2 \text { and interpret }$
4	Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling	Counters Objects Hoops, cups or plates for sharing into. Numicon Multilink	Pictures of objects and groups. Pictures of practical resources. Arrays	Number sentences (Include repeated addition.) Missing numbers Missing symbols Move the equals sign	1. Simone bought apples in bags like this. She wasn't sure how many bags she bought but it was either 13,14 or 15 ! When she counted, there were 75 apples. How many bags did she buy? Each week Marcella buys a magazine for 60 p and 2 colouring pens for 35 p each. After 8 weeks, how	Harry says: The distributive law means that: $95 \times 6=65 \times 9$ Do you agree with Harry? Prove your answer with some calculations.

Year 5

| Year
 group: | NC L.O. | Practical | Pictorial | Abstract | Problem Solving | Reasoning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objectives running
 through the unit | - Multiply and divide numbers mentally drawing upon known facts. (Should know 12 x12)
 - Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes.
 - Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the
 meaning of the equals sign. | | | | | |

	Shape, space, measure and statistic opportunities: Year 4 - Find the area of rectilinear shapes by counting squares (Areas of squares and rectangles using arrays)					
5	2020 Guidance	5MD-2 Find fact factors. Year 5	and multiples of p ument, pages 46-4	whole numbers, includin	common factors and common multiples, and express	mber as a product of 2 or 3
5	Establish whether a number up to 100 is prime and recall prime numbers up to 19. Creating an action set for primes up to 19 will help embed those numbers.	Counters for arrays Dienes Multi-link cubes for making arrays.	Hundred squares	Missing numbers Missing symbols Move the equals sign Bar Model (for demonstrating primes) Incomplete factor ladders / rainbows	Emma thinks of two prime numbers. She adds the two numbers together. Her answer is 36 Write all the possible pairs of prime numbers Emma could be thinking of. Write each number in its correct place on the $\begin{array}{lllll}\text { diagram. } & 16 & 17 & 18 & 19\end{array}$ Here is a diagram for sorting numbers. Write these three numbers in the correct boxes. You may not need to use all of the boxes.	Mr Moore says: "If I add together two prime numbers the total will be even" Is this always, sometimes or never true? Explain your answer.

					Charlie has a rectangular garden patio with an area of $120 \mathrm{~m}^{2}$. Charlie's patio is a prime number wide and a composite number long. Write all the possible combinations of length and width that Charlie's patio could be.	
5	Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers.	Counters for arrays Dienes Multi-link cubes for making arrays.	Printed arrays Picture representations of rectangles for area Hundred squares Pictorial representations of squares and cubes	Missing numbers Missing symbols Move the equals sign Bar Model (for demonstrating primes) Incomplete factor ladders / rainbows Incomplete prime factor trees Find pairs of numbers that satisfy these equations: A: Prime number + composite number $=20$	There are two numbers under 100 that have SIX prime factors. One of them is $64\left(2 \times 2 \times 2 \times 2 \times 2 \times 2\right.$ or $\left.2^{6}\right)$ What is the other number? Complete this prime factor tree:	What number has the first four prime numbers as its prime factors? Explain how you calculated this? "A three-digit number should have a larger number of prime factors than a two-digit number." Do you agree with Mr Moore? Provide at least 3 examples that prove your answer.

				B: Prime number + prime number $=20$ C: $100=$ Prime number + composite number D: Prime number + prime number = 100 Find the prime factors of the following numbers: A. 42 B. 28 C. 100 D. 72 E. 64		
5	Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3).	Multi-link cubes for making squares and cubes	Pictorial representations of squares and cubes	Missing numbers Missing symbols Move the equals sign Incomplete factor ladders / rainbows	Put these values in order with the smallest first 36 and 64 are both square numbers They have a sum of 100 Find two square numbers that have a sum of 130	Prove that 16 is a square number. Give a calculation, pictorial proof and explanation. Spot, explain and correct the mistake below: $7^{2}=7 \times 2=14$

					Mr Moore asks one of his classes to all put up both their hands. He counts 270 fingers and thumbs. How many pupils were in the class? Jack has 128 football stickers and Casey has 142. They decided to share their combined stickers between 10 friends. How many stickers did each friend get? Mr Moore, Miss Palk and Mrs Powell are comparing the size of their kettles. Mr Moore's holds 1450 ml , Miss Palk's holds 1230 ml and Mrs Powell's holds 2320 ml . What is the combined capacity in litres?	
	Shape, space, Year 4 - Conve Year 5 -Conver	asure and stat g between mill etween differen	opportunities: tres and centim nits of metric me	/ centimetres to (for example, kilom	and metre; gram and kilogram; litre and millilitre)	
5	2020 Guidance	5NF-2 Apply plac $1.4,0.08+0.06=0$ 5MD-1 Multiply a Year 5 document	alue knowledge to $4 ; 3 \times 4=12,0.3 \times$ divide numbers by ages 42-46.	wn additive and multipli $2 ; 0.03 \times 4=0.12$. Year 5 nd 100 ; understand this	ative number facts (scaling facts by 1 tenth or 1 hundredth), for cument, pages 37-42. equivalent to making a number 10 or 100 times the size, or 1 te	xample: $8+6=14,0.8+0.6=$ or 1 hundredth times the size.
5	Multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers.	Dienes to demonstrate partitioning and recombining	Pictorial representations of arrays.	Short and long multiplication methods Missing numbers Missing digits Missing symbols Move the equals sign $2435 \times 5=$ $?=8543 \times 3$ $7643 \times 11=$ $12 \times 8405=$ $?=33 \times 8007$	Mr Moore drives 124 miles every day for a week. Does he travel more than 900 miles over the week? Complete the bar model below: Write a division fact related to the bar model above. How many hours are there in the month of January? A toy shop orders 11 boxes of marbles. Each box contains 6 bags of marbles.	Casey says "If I multiply a 4-digit number by a single digit number I will never get a 6-digit number" Is Casey correct? Explain why / why not. Jack uses a written method to calculate 2999×7. Harriet had worked out the calculation before Jack had even laid out the calculation. How did Harriet work it out so quickly? Lily does the following calculation. Is her answer

				$3456 \times 47=$ MMXVII \times LXXXV =	Each bag contains 45 marbles. How many marbles does the shop order in total? Sarah has the following cards: $3 \quad 9$ \square 4 \square 5 7 Arrange the cards below to give a product that is an even number. A car dealer in Plymouth sells 22 cars for $£ 7,250$ for. Another car dealer in Exeter sells 17 cars for $£ 9,723$ each. The Plymouth dealer says: "I've made more money because l've sold more cars!" Is he correct? Explain why / why not, including calculations.	correct? Can you explain why / why not? $\begin{array}{r} \\ \\ \times \quad 3 \\ +\quad 5 \\ +\quad 1 \\ \hline \end{array} \begin{aligned} & 5 \\ & \hline \end{aligned}$ Look at this calculation: $2824 \times 17=?$ Sophie says: "I will get a larger product if I round each number to the nearest 10 and then multiply" Chloe says: I will get a larger product if I multiply both numbers using a formal method and then round the product to the nearest 10 . Who is correct? Prove your answer.
	Shape, space, Year 5 - Measure	asure and sta d calculate the	opportunities: meter of a rectilinear	(including squares)	ntimetres and metres.	
5	2020 Guidance	5NF-1 Secure flue 5MD-3 Multiply a	y in multiplication table whole number with up	cts, and corresponding 4 digits by any one-dig	ivision facts, through continued practice. Year 5 documen umber using a formal written method. Year 5 document,	es 35-36. 50-53.
5	Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	"Solid" objects that can't be cut, such as cubes, counters, "Cuttable" resources, such as cake, paper, fruit Coins	Pictorial representations of "solid" and "cuttable" resources	Missing numbers Missing digits Missing symbols Move the equals sign Express the remainder as a whole / fraction / decimal	Jessica has $£ 900$ in five pound notes. How many five pound notes does she have? I have a pile of 81 pencils and I want to put them in boxes of 6. How many full boxes can I make? A clown needed seven hundred seventy-nine balloons for a party he was going to, but the balloons only came in packs of seven. How many packs of balloons would he need to buy?	$50 \div 2=? \div 4=200 \div ?$ Can you find the missing numbers? Can you spot a pattern? Can you explain the pattern? James says:

					What type of remainder will this question give you? $\begin{aligned} & 2858 \div 2= \\ & 6585 \div 5= \\ & 2408 \div ?=4 \\ & * F .1002 \div 3= \end{aligned}$ Complete the bar models: 3.) Spot the mistake and correct: $\begin{array}{l\|lllll} & 3 & 1 & 4 & 0 & 15 \\ \hline & 6 & 2 & 8 & 5 & \end{array}$	A 50 cm length of wood is cut into 4 cm pieces. How many 4 cm pieces are cut and how much wood is left over? Fill in the blanks to represent the problem as division: \square $\div \square$ \square remainder \square Fill in t \times \square \square $\square=50$	"To find the divisor in a division calculation you multiply the dividend by the quotient" Is James correct? Explain your reasoning and prove it with a calculation. 70 printers are to be shared equally amongst 6 office floors. Isaac says "Each floor will receive 11 printers" Harriet says "Each floor will receive 12 printers" Jack says "Each floor will receive 11.666 printers" Who is correct? Convince me with a calculation and explanation. Paige is having a party! Three hundred and six people are invited. Paper plates come in packs of 5 . Zen thinks Paige will need 61 packs of plates. Ava thinks she'll need 62 packs of plates. Who is correct? Explain why.
5	2020 Guidance		$5 \mathrm{NF}-1$ Secure fluen 5MD-4 Divide a nu document, pages	ncy in multiplication table umber with up to 4 digits by 54-57.	acts, and corresponding a one-digit number using	vision facts, through continued practice. Year 5 docum a formal written method, and interpret remainders appr	3es 35-36. for the context. Year 5

5	Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Dienes for scaling Coins	Printed PV charts Picture representations of dienes / PV cards Pictorial representations of measuring instruments Conversion graphs Exchange rate graphs	Missing numbers Missing digits Missing symbols Move the equals sign	Scaling Here is a recipe for biscuits: 90 g flour 50 g butter 60 g seeds 30 ml water Nigel has 100 g of butter to make some biscuits. How much flour, seeds and water will be needed? Explain what you needed to do to get the answer and why. Here is Mr Moore's recipe for the perfect purple paint: - 600 ml Blue paint - 300 ml Red paint - 100 ml White paint Mr Moore wants to make 200 ml of purple paint. How much Blue, Red and White paint will he need? Tim has a scale model car that has a width of 7.4 cm . The real car is thirty-two times larger than the model car. How wide is the real car?	Sarah is using the following Victoria Sandwich recipe: 200g Flour 150g Caster Sugar 175g Butter 3 Eggs Sarah says "I have 600 grams of flour, 600 grams is 400 grams more than 200 g so I need to add 400 to each of my ingredients to scale up my recipe" Is Sarah correct? Explain your answer Jane sees this exchange rate in a travel agent: £1 $=\$ 1.4$ Jane says "If I exchange £200 I should have over $\$ 300$ " Is Jane correct? Prove and explain your answer.

Year 6

6						
Objectives running through the unit		[EXS] [KEY] Solve problems involving addition, subtraction, multiplication and division. [EXS] [KEY] Perform mental calculations, including with mixed operations and large numbers. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.				
6	Identify common factors, common multiples and prime numbers.	Counters for arrays Dienes Multi-link cubes for making arrays.	Printed arrays Hundred squares	Number sentences (Include repeated addition.) Missing numbers	Write all the factors of 30 which are also factors of 20 . This three-digit number has 2 and 7 as factors. 294	Prove that 6 is not a factor of seventy.
			Picture representations of rectangles for area.	Missing symbols Move the equals sign	Write another three-digit number which has 2 and 7 as factors. Here are three digit cards:	Explain why all multiples of 15 are multiples of 5 but not all multiples of 5 are multiples of 15.
				Bar Model (for demonstrating primes)	1 5 6	
				Incomplete factor ladders / rainbows	Choose two cards each time to make the following two-digit numbers.	
				Incomplete prime factor trees	The first one is done for you.	
					an even number 5 6	
					a prime number	
					a common factor of 60 and 90	
					a common multiple of 5 and 13	

					Simon is cutting some pipe for a bathroom installation. He needs 26 lengths of 75 cm . He has four 5 metre long pipes in his van. Does Simon have enough pipe? Show your workings	345×144 Taima says ' I can't complete this calculation as I haven' \dagger been taught how to multiply by a three digit number'
	Shape, space, measure and statistic opportunities: Year 5 - Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes					
This is not an official objectiv e but is a good intro to division with doubledigit divisors.	Divide numbers up to 4 digits by a two-digit whole number by using factor pairs of a number	Dienes Counters Coins "Solid" objects that can't be cut, such as cubes, counters, "Cuttable" resources, such as cake, paper, fruit	Pictorial representations of "solid" and "cuttable" resources	Missing numbers Missing digits Missing symbols Move the equals sign Express the remainder as a whole / fraction / decimal What type of remainder will this question give you? Compare these calculations using <, > or $=$: $\begin{aligned} & 2,400 \div 30 \\ & 2,400 \div 10 \div 3 \end{aligned}$ What do you notice?	Complete these calculations by finding two single digit factor pairs for each divisor. i. $1700 \div 20=$ ii. $1608 \div 24=$ iii. $8,000 \div 64=$ Use factor pairs to find the following fractions of amounts: i. $1 / 30$ of $3,780=$ ii. $1 / 16$ of $3,888=$ iii. $4 / 18$ of $3,996=$	${ }^{\text {* }}$ C. Mr Moore is trying to complete the following division: $893 \div 19$ Dominic says: "Mr Moore won't be able to use factor pairs to simplify his division" Explain why Dominic is correct.
6	Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as	Dienes Counters Coins "Solid" objects that can't be cut, such as cubes, counters, "Cuttable" resources, such	Pictorial representations of "solid" and "cuttable" resources	Missing numbers Missing digits Missing symbols Move the equals sign Express the remainder as a whole / fraction / decimal	An egg factory has 540 eggs to place into boxes of twelve. How many boxes can they fill? Betty raises $£ 287$ during a sponsored cycle and Cory raises £633 during a sponsored swim. They decide to share their combined funds between 20 local charities. How much does each charity receive? A coach carries 61 passengers. There are 1,368 football fans that want to travel to an away match. How many coaches are needed to carry them all?	Explain the mistake that has been made in the calculation below:

	appropriate for the context. (Minimum amount of time, move on to short)	as cake, paper, fruit		What type of remainder will this question give you?	Leon is selling cupcakes. His ingredients cost £8.18. He is selling his cakes for 35 p. How many does he need to sell to make a profit? Tom gives his cat the same amount of food every day. A 4.5 kg bag of cat food lasts for 32 days. How much does his cat eat each day? Round your answer to the nearest gram.	$\begin{gathered} 192 \div 12=160 \\ 1 6 \longdiv { 1 9 2 } \\ -\frac{12}{12} \\ -\frac{72}{12} \end{gathered}$
6	[EXS] [KEY] Divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to the context.	Dienes Counters Coins "Solid" objects that can't be cut, such as cubes, counters, "Cuttable" resources, such as cake, paper, fruit	Pictorial representations of "solid" and "cuttable" resources	Missing numbers Missing digits Missing symbols Move the equals sign Express the remainder as a whole / fraction / decimal What type of remainder will this question give you?	An egg factory has 540 eggs to place into boxes of twelve. How many boxes can they fill? Betty raises £287 during a sponsored cycle and Cory raises £633 during a sponsored swim. They decide to share their combined funds between 20 local charities. How much does each charity receive? A coach carries 61 passengers. There are 1,368 football fans that want to travel to an away match. How many coaches are needed to carry them all? Leon is selling cupcakes. His ingredients cost £8.18. He is selling his cakes for 35 p. How many does he need to sell to make a profit? Tom gives his cat the same amount of food every day. A 4.5 kg bag of cat food lasts for 32 days. How much does his cat eat each day? Round your answer to the nearest gram.	Check these calculations, explaining any mistakes that have been made $\begin{aligned} & 1 2 \longdiv { 2 0 7 } \\ & 1 4 \longdiv { 3 2 ^ { 8 } 4 } \\ & 162^{8} 4 \\ & 1 1 \longdiv { 7 5 } \\ & 71^{5} 5 \end{aligned}$ Do you prefer long or short division? Explain why.

Changelog

2020-21
Moved Y 5 square and cube objectives to come after all prime numbers had been completed.
Added in 2020 non-statutory guidance (cells filled in blue)
2021-22
Added in opportunities for shape, space, measure and stats to be slipped in
Removed the Y4 'Recall multiplication facts' objective as we teach this throughout the year.

