Area of Maths = Shape, Space, Geometry and Position

Declarative knowledge	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
SSGP Automatically recall... Blue highlight = Roche's Specific Expectations Red font = Roche's Priorities for Revisiting	I know what a repeating pattern is. E.g. (AB, ABB and ABBC)	The names of common 2D shapes (rectangles, including squares, triangles and circles) The names of 3D shapes (Cuboids, including cubes, pyramids and spheres)	Identify and describe the properties of 2-D shapes, including the number of sides, and line symmetry in a vertical line. (Introduce pentagons, hexagons, octagons.) Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces. (Introduce prisms.) Identify 2-D shapes on the surface of 3-D shapes. Declare the difference between common 2-D and 3-D shapes and everyday objects.	Angles as a property of shape or a description of a turn. Right angles, recognise that 2 right angles make a halfturn, 3 make threequarters of a turn and 4 a complete turn; Horizontal, vertical, parallel and perpendicular lines (Definitions = Declarative Know an acute angle is less than a right angle and an obtuse angle is more than a right angle. (Non stat guidance)	Classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. 16 quadrilaterals +3 triangles) Identify lines of symmetry in 2-D shapes presented in different orientations. (Dec. = What is a line of symmetry? Describe positions on a 2-D grid as coordinates in the first quadrant. (Dec. = Know which way around the coordinates go. Know and label the X and Y axis.)	Know angles are measured in degrees. (Introduce reflex angles.) Identify: angles at a point and 1 whole turn (total 360°) angles at a point on a straight line and half a turn (total 180°) other multiples of 90°. (Dec. = define the definitions by degrees.) Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	Name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius. Recognise angles where they meet at a point, are on a straight line, or are vertically opposite.

Year 1						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
1	[KEY] Recognise and name common 2-D including 2-D shapes [for example, rectangles (including squares), circles and triangles].	$\begin{aligned} & \text { 2-D shapes } \\ & \text { from the } \\ & \text { maths } \\ & \text { cupboara. } \\ & \text { 2-D shapes } \\ & \text { seen in the } \\ & \text { classsomom } \\ & \text { Shape } \\ & \text { hunt). } \end{aligned}$	names of the two shapes in this picture.		Join dots to make 2 more triangles. Use a ruler.	Sarah is thinking of a 2-D shape. Sarah's shape has four straight sides. Write down two shapes that Sarah could be thinking of.

		Match the shapes above with their correct names.
2020 Guidance	1G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another. 1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations. Year 1 document, pages 35-39	

1	Describe position, direction and movement, including whole, half, quarter and three-quarter turns. (Remember ordinal language, first, second, third...)	Bee-bots Walking commands Position in the line	Draw what each shape will look like once it has turned a: - quarter turn clockwise - half turn clockwise - three quarter turn clockwise - full furn clockwise		Put a tick below the fourth black bead. Put your finger on Start. Move your finger up 1 square then across 3 squares. Tick (V) the animal your finger stops on. Complete the sentences using 'left' and 'right' to describe the position of the coins. The £1 coin is to the \qquad of the 1p coin.	Who is correct? Explain how you know.

(ancer

Year 3

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
3	[KEY] Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn. Recognise angles as a property of shape or a description of a turn.	Angle hunt, looking for angles around the room. Rulers with right angle corners Beebot turns	Drawing right angles in books. Identifying right angles in shapes. How many right angles does this shape have: Draw a shape with four right angles. Draw a shape with only one right angle	A shape has 4 right angles. It has 4 sides which are not all the same length. Write the name of this shape.	Sort the shapes based on the number of right angles they have. Record your answer in a table. This shape is turned clockwise through one right angle.	The arrow on a spinner started in this position. After making a turn it ended in this position. Who do you agree with?

			The shape has \qquad vertical and \qquad horizontal lines.	Draw a letter from the alphabet that has vertical lines but no horizontal lines. Now draw a shape that has horizontal lines but no vertical lines. Can you draw a letter that has both horizontal and vertical lines?		
2020 Guidance		3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides. Year 3 document, pages 64-66.				
3	Draw 2-D shapes and make 3-D shapes using modelling materials. Do the 2-D Shape part first so the 3-D links to the next objective.	Rulers K'nex Lego 2-D shapes for drawing around Polydron	Describe this quadrilateral. It has \qquad angles. It has \qquad right angle(s). It has \qquad obtuse angle(s). It has \qquad acute angle(s). It has \qquad lines of symmetry.	Draw the following shapes in your book: A square with sides of 4 cm A triangle with one obtuse angle A quadrilateral with only one pair of parallel lines. A rectangle whose length is double its width.	Draw at least one shape in each section of the diagram. I have 9 straws and 6 balls of PlayDoh. What 3-D shape can I create using all of	Rosie describes a 2-D shape. Draw the shape that Rosie is describing. Could this square be Rosie's shape? Explain why.

	Draw another shape that has the same properties.		the straws and Play-Doh? Have a go at making it.	Rosie says, Explain the mistake Rosie has made. How many straws and balls of Play-Doh would you need to create a pyramid?
2020 Guidance	3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides. Year 3 document, pages 64-66.			

Year 4

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
4	Identify acute and obtuse angles and compare and order angles up to two right angles by size.	Rulers 2-D shapes Constructio n equipment (K'nex to make angles) Angle hunt around the classroom	Place two pieces of masking tape on the desk to make an angle. Now put your ruler along one of the strips in push it to the corner where the strip meets the second strip. Does your second strip go underneath your ruler? If it does you have an acute angle. If the second strip does not go behind the ruler you have an obtuse angle. If your ruler fits the corner of the two strips perfectly you have a right-angle.	Here are five angles marked on a grid of squares. Write the letters of the angles that are obtuse. Write the letters of the angles that are acute. Look at this shape.	Here are 5 angles on dotted paper: There are two pairs of the same angle and an odd one out. Can you identify the two pairs and the odd one out?	Who is correct? Explain your reasons.

				Draw a cross in the corner with the smallest angle.		Do you agree with Ron? Explain your thinking.
4	[KEY] Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. Suggested order: Triangles, Quads, other regular and irregular polygons, curved shapes.	2-D shapes Constructio n kits (K'nex, Lego, DM's building kit) Shape hunting around the classroom	This is a \qquad All 4 sides are \qquad	Draw and label: A square A rectangle A quadrilateral with only one pair of parallel lines A right-angled triangle An irregular pentagon Join dots on the grid to make a quadrilateral that has 3 acute angles.	Sort the shapes below into the Venn diagram on the right:	Maisie has a square and cuts it along the dotted line to make two triangles: Faye says "Maisie has made 2 isosceles triangles"

4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry. Year 4 document, pages 67-70.

4	Describe positions on a 2-D grid as coordinates in the first quadrant	100 square in playground Peg boards	Co-ordinate grids Co-ordinate ITP https://mathsframe.co.u k/en/resources/resource /79/itp-coordinates	Look at the graph. The x-coordinate of \mathbf{A} is $\mathbf{2}$ What is the y-coordinate of A ? Point A is marked on the grid. The coordinates of A are $(4,4)$. \qquad Mark one point on the grid that has: an x coordinate that is equal to 4 , and a y coordinate that is greater than 4 Write the coordinates for the points shown. $\begin{aligned} & *(\ldots,-) *(\ldots,-) \\ & *(\ldots,-) *(\ldots,-) \end{aligned}$	 Which clue matches which coordinate? My x coordinate is half of my y coordinate. Clue 2 My y coordinate is less than my x coordinate. Clue 3 prime numbers.	 Who is correct? What mistake has one of the children made?

Year 5

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
Objectives running through the unit		Identify other multiples of 90°.				
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
5	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.	Rulers 2-D shapes Constructio n equipment (K'nex to make angles) Angle hunt around the classroom	Look at the angles below and write whether they are acute, obtuse, or reflex:	In your book draw: - A right angle - An acute angle - An obtuse angle - A straight angle (You need a point of measure) - A reflex angle - A revolution	In the questions, below all of Harry's movement is in a clockwise direction. If Harry is facing North and turns through 180 degrees, in which direction will he be facing? If Harry is facing South and turns through 180 degrees, in which direction will he be facing? What do you notice? If Harry is facing North and wants to face SW how many degrees must he turn? From this position how many degrees must he travel through to face North again?	The circle is divided into quarters by the two diameter lines and four angles A, B, C and D are marked. Are the statements below true or false? - Angle C is the smallest angle. - Angle D is the largest angle. - All the angles are the same size. - Angle B is a right angle.

			Estimate the size of angle x Circle the closest estimate. $\begin{gathered} 170^{\circ} \quad 310^{\circ} \quad 190^{\circ} \\ 260^{\circ} \quad 180^{\circ} \end{gathered}$			- Angle B is an obtuse angle. Explain your reasoning. Mr Moore estimates the angle labelled x below to be 60° Mr Moore cannot be correct because.... Miss Palk says, "You can't draw an obtuse angle and two acute angles on a straight line". Is Miss Palk correct? Prove your answer with a diagram.
2020 Guidance		5G-1 Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and draw angles of a given size. Year 5 document, pages 67-70				
5	[KEY] Draw given angles and measure them in degrees $\left({ }^{\circ}\right)$.	Rulers Protractors	Estimate the size of the angles and then use a protractor to measure them to the nearest degree. How close were your estimates? $\xrightarrow{\square}$	Draw an estimate of the following angles: A. 45° B. 150° C. 178° Now measure your angles. What is the difference between your estimate and measurement?	Here is a sketch of a triangle. It is not drawn to scale. Draw the full-size triangle accurately, below.	Three children are measuring angles. Can you spot and explain their mistake?

					Use an angle measurer (protractor) and a ruler. One line has been done for you.	
2020 Guidance		5G-1 Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and draw angles of a given size. Year 5 document, pages 67-70				
5	Identify angles at a point on a straight line and a turn (total 180°).	Rulers Protractors	Calculate the size of angle y in this diagram. Do not use a protractor (angle measurer). Not to scale	There are five angles on a straight line. Two of them are 32° and 43°, and the other three angles are all equal. Prove that the other three angles are 35°	$A B$ is a straight line. What is the value of y ?	Below is a square touching a straight line. Calculate angle a. Explain how you got your answer.

5	Identify angles at a point and one whole turn (total 360°).	Rulers Protractors	This shape is threequarters of a circle. How many degrees is angle x ?	Complete the sentences: $1 / 4$ of a turn $=1$ right angle $=$ 90° $1 / 2$ of a turn = \qquad right angles $=$ \qquad。 \qquad of a turn $=3$ right angles = \qquad - A full turn = \qquad right angles $=$ \qquad ${ }^{\circ}$	Calculate the size of angle p in the diagram. Do not use a protractor (angle measurer).	Sam measures all three angles around a single point: Sam says: I need to measure all three angles around the point to find all their values. Do you agree with Sam? Sam measures the angles to be $120^{\circ}, 187^{\circ}$ and 145°. Explain how you know that at least one of Sam's measurements is incorrect.
5	Use the properties of rectangles to deduce related facts and find missing lengths and angles.	Rulers 2-D shapes	Look at the square and the rectangle. What's the same? What's	Draw all the unique rectangles with an area of 20 squares. Draw a rectangle with an area of 24 squares and a perimeter of 22 squarelengths.	The twelve points on this circle are equally spaced. Join four points to make a square. Use a ruler.	Mr Moore is trying to make a tiled rectangle for his bathroom wall. He has 13 square tiles and doesn't want to cut them. Explain why he can only draw one unique rectangle.

						Always, sometimes or never true? - A regular polygon has equal sides but not equal angles. - A triangle is a regular polygon. - A rhombus is a regular polygon. - The number of angles is the same as the number of sides in any polygon.
5	Identify 3-D shapes, including cubes and other cuboids, from 2-D representations. ৬ GD objective: Identify and create 3-D shapes, including cubes and other cuboids, from 2-D representations.	3-D shapes Nets Covering 3- D shapes in paint and then rolling it on paper to create nets.	What shapes do you make when these 2-D representations (nets) are cut out and folded up to make 3-D shapes?	Draw a net of the following objects:	Jack has two square-based pyramids that are the same size. He sticks the square faces together to make a new 3-D shape. How many faces and how many edges does his new 3-D shape have?	Amir says, If two 3-D shapes have the same number of vertices, then they also have the same number of edges. Do you agree? Explain why.

5	Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Squared paper Battleships Ceiling tiles as an x and y axis. Geoboards Pegboards Pegged-out areas outside	 What are the coordinates of the vertices of the rectangle?	Plot the following points on the grid. $(3,5)$ $(4,4)$ $(0,2)$ $(4,0)$	 Write the co-ordinates of the next triangle in the sequence. Annie is finding co-ordinates where the x-coordinate and the y coordinate add up to 8. For example: $(3,5) 3+5=8$ Find all of Annie's coordinates and plot them on the grid. What do you notice? Now do the same for a different total.	 Who do you agree with? Can you spot the mistake the other child has made?

Year 6

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving		Reasoning
Objectives running through the unit							
6	[EXS] [KEY] Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.	Tape on desks for measuring vertically opposite angles.				(Take a piece of paper and draw a large ' X '. Mark the angles on as shown. Measure the angles you have drawn. What do you notice about angles b and d ? What do you notice about angles a and c? Is this always the case? Investigate with other examples.

6	[EXS] [KEY] Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons.		Classify the quadrilaterals using the diagram below:	Use your knowledge of properties of shapes to find the missing lengths / angles in the shapes below:	Two equilateral triangles are arranged together as shown below: Calculate angle x What is the quadrilateral that the two triangles make?	Investigate the sum of the internal angles by doing this: Repeat the idea but with quadrilaterals (see below): Jack says: The unknown angle is 124°. Prove that Jack is wrong using; a) a calculation. b) your knowledge of angle types.
6	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.	Circular objects to measure	Cut out the circles below:	If a circle has a radius of 20 cm , what is the diameter? If a circle has a diameter of 56 cm , what is the radius? If a tiny circle has a radius of 0.243 cm , what is the diameter?	The diagram shows a rightangled triangle inside a circle. The triangle has two vertices touching the circumference of the circle and a third touching the centre of the circle. The circle has a diameter of 12 cm .	Measure the diameter and radius of 3 circles in the classroom. Is there a relationship between the radius and diameter? Could you express any relationship algebraically?

			Fold the circles in half, unfold, the fold in half along a different line. The point where the two folds meet is the centre point. Measure the length from the centre of the circle to the edge of the circle. This is the radius. Now measure the length of one of the complete folds, through the centre point. This is the diameter.		What is the area of the triangle?	
6	Draw 2-D shapes using given dimensions and angles. ५ GD objective: Draw 2-D shapes to different scales using given dimensions and angles.		Here is a sketch of a quadrilateral. It is not drawn to scale.	Draw an equilateral triangle with side lengths of 6 cm . Draw a rectangle with a perimeter of 24 cm Draw a right-angled triangle with an area of $10 \mathrm{~cm}^{2}$	Eva has drawn a scalene triangle. Angle A is the biggest angle. Angle B is 20° larger than angle C. Angle C is the smallest angle, and it is 70° smaller than angle A. Use a bar model to help you calculate the size of each angle, then construct Eva's triangle.	

		Draw the full-size quadrilateral accurately below. Use a protractor (angle measurer) and a ruler. Two of the lines have been drawn for you.		Is there more than one way to construct the triangle?	
2020 Guidance		6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems. Year 6 document, pages 53-57.			
6	Recognise, describe and build simple 3-D shapes, including making nets.	Draw possible nets of these three-dimensional shapes.	What three-dimensional shape can be made from these nets?	This is a drawing of a pentagonal prism. Tick (\mathcal{V}) the one shape that is a net for the pentagonal prism.	

6	Draw and translate simple shapes on the coordinate plane and reflect them in the axes.	Geoboards Pegboards Pegged-out areas outside Quadrant grids on the ceiling		 Use the graph describe the translations. One has been done for you. From \square to \square translate 8 units to the left From \square to \square translate _ units to the left and __ units up \square From \square to \square translate 4 units to the \qquad and 5 units \qquad the __ a and _ units __	The diagram shows two identical triangles. The coordinates of three points are shown. Find the coordinates of point A . Draw a shape using the coordinates $(-2,2),(-4,2),(-2,-3)$ and ($-4,-2$). What kind of shape have you drawn? Work out the missing coordinates of the rectangle.	True or false? Sam has translated the square ABCD 6 units down and 1 unit to the right to get to the yellow square. Explain your reasoning.

