Area of Maths = Measurement

Definition: "Use of

standard units to determine size or quantity in regard to length, breadth, height, area, mass or weight, volume, fluid volume, capacity, emperature and time."

From Jenny Eather's A Maths Dictionary for Kids
http://www.amathsdi ctionaryforkids.com

Metric Vocabulary:

Length / Height

Millimetre (mm), Centimetre (cm), Metre (m), Kilometre (km)

Area

Square centimetre $\left(\mathrm{cm}^{2}\right)$ Square metre (m^{2})

Volume

Cubic centimetre $\left(\mathrm{cm}^{3}\right)$, Cubic metre (m^{3})

Mass / Weight
Milligram (mg), Gram (g), Kilogram (kg), Tonne (t)

Capacity

Millilitre (ml), Litre (I)

Temperature

Celsius (${ }^{\circ} \mathrm{C}$)

Time

Second, Minute, Hour, Day, Week, Month, Year, Decade Century

Metric Conversions:
 Length / Height

10 millimetres $=1$ centimetre, cm 100 centimetres $=1$ metre, m 1000 metres $=1$ kilometre, km

Mass / Weigh

1000 milligrams = 1 gram, g 1000 grams $=1$ kilogram, kg 1000 kilograms $=1$ tonne, \dagger

Capacity

1000 millilitres $=1$ litre, I or L

Time

1 minute $=60$ seconds
60 minutes $=1$ hour
1 day $=24$ hours
7 days $=1$ week
1 Year $=12$ months ≈ 52 weeks
1 Year $=365$ days (366 in a leap year)
1 Decade $=10$ years
1 Century $=10$ decades $=100$ years.

Imperial to metric approximations

Imperial unit	Metric
1 inch	$\approx 2.5 \mathrm{~cm}$
1 foot	$\approx 30 \mathrm{~cm}$
1 yard	$\approx 91 \mathrm{~cm}$
1 mile	≈ 1.6 kilometres
1 ounce	≈ 28 grams
1 pound	≈ 454 grams
1 stone	≈ 6.4 kilograms
1 pint	≈ 568 ml
1 gallon	≈ 4.5 litres

Declarative knowledge

Year 1						
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
1	Measure and begin to record lengths and heights. Compare, describe and solve practical problems for lengths and heights [for example, long or short, longer or shorter, tall or short, double or half].	Measuring apparatus (Metre sticks, rulers) Multilink cubes to use as a standard unit of length	Questions that involve images for comparison, such as: Use the words taller and shorter in the sentence stems to compare the height of the man and the boy. The man is \qquad than the boy. The boy is \qquad than the man.	Questions without images for comparison, such as: Draw a line in your book that is longer than your pencil. Then draw a line that is shorter than your pencil. List five things in the classroom that are taller than you. List five items that are shorter than you.	 Put the four towers in order from tallest to shortest.	Rosie, Alex and Mo are comparing the height of Mrs Rose and Jack. Can you improve their sentences to make them more accurate?
1	Measure and begin to record mass/weight. Compare, describe and solve practical problems for mass or weight [for example, heavy or light, heavier than, lighter than].	Scales	Questions that involve images for comparison, such as: The \qquad is heavier than the \qquad The \qquad is lighter than the	Recording weights	Mrs Gardner has put four objects in order, starting with the lightest. 1. A feather 2. A car 3. A book 4. A table Can you spot Mrs Gardner's mistake?	"I'm thinking of an object. It is heavier than a pencil, but lighter than a dictionary." What object could Jack be thinking of? Prove it. How many objects can you think of?

		empty.				
1	Recognise and know the value of different denominations of coins and notes.	Coins and bank notes.	Images of coins and notes	What am I? I am silver. I have 7 edges. have the picture of Britannia next to a lion on me.	How many 1p coins would you need to make 20p? How many $2 p$ coins would you need to make 20p? How many other ways can you make 20 p using the same coins? Match each coin to the correct box. One has been done for you.	Sally says: The silver coin must be worth more because it is bigger than the gold coin. Do you agree?

(20)

Year 2								
Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving			Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT				
2	[EXS] Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using symbols for greater than, less than and $=$.	Rulers: 30cm, 1 m , tape measures + trundle wheel	Pictorial Scales/Rulers Testbase Questions with pictures ITP Use a ruler to measure the length of this train.	Testbase Questions with no pictures Greater than, less than, equals symbols True or False Explain your reasoning. $18 \mathrm{~cm}>9 \mathrm{~cm}$ $27 \mathrm{~cm}<17 \mathrm{~cm}$ $100 \mathrm{~cm}>1 \mathrm{~m}$ Measuring and drawing straight lines.	2 Pencil C is the longest pencil. Order the rest of the pencils. You may use a ruler. longest \qquad			

2	[EXS] Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); femperature $\left({ }^{\circ} \mathrm{C}\right)$; eapacity (litres/mil) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using symbols for greater than, less than and $=$.	Weighing scales Balancing scales	Pictorial Scales Testbase Questions with picłures ITP What is the mass of this bear?	Testbase Questions with no pictures Greater than, less than, equals symbols	Jack measures the mass of some fruit. Look at these signs. \square Write the correct sign in each box mass of the banana \square mass of the pear mass of the apple \square mass of the banana mass of the apple \square mass of the pear Milly needs $\mathbf{1 0 0}$ grams of flour. How much more flour does she need to add to the bowl?
2	[EXS] Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); femperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales,	Measuring Vessels Liquids	Pictorial Scales Testbase Questions with pictures ITP	Testbase Questions with no pictures Greater than, less than, equals symbols	Sahil, Marta \& John have 700 ml of pop between them. Sahil and John drink the same amount. Marta has 100 ml more than Sahil and John. How much do they all drink?

					What is the difference between temperature $\mathrm{A}+\mathrm{C}$? How much warmer is thermometer C than B ?	
2	[EXS] [KEY] Find different combinations of coins that equal the same amounts of money. Recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value.	Coins Purses Price Tags	Coins Price Tags BINGO cards	Simple number sentences using + and £ and p symbols.		

					Look at these coins. How could you make up the same total amount one type of coin? (5p) 5p Holly uses a $£ 1$ coin to buy a pack of stickers. Here is the change she w 20p How much did the pack of stickers cost?
2	Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.	Coins Purses Price Tags	N/A	N/A	A good activity we do here is role play shops linking to our topic e.g. Garden Centre. The children have to set it up, create prices within a particular unit and then role play customers and shop keepers. The customers have £2 to spend until they need to swap over. Change is a key aspect of this. Doing this more than once is beneficial.

2	[EXS] [KEY] Tell and write the time to fifteen minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. (Drip feed all year!) Know the number of minutes in an hour and the number of hours in a day.	Clocks (mini and large)	Clock faces Timetable of events to order	Word problems with no images.	
2	Compare and sequence intervals of time. Know the number of minutes in an hour and the number of hours in a day.	Clocks (mini and large)			

3	[KEY] Measure, compare, add and subtract: lengths (m, cm,mm); mass (kg,g); volume. capacity (I,ml).	Scales and various objects to weigh. Can pupils estimate weights of objects? Can the say whether one object is lighter or heavier than another?		Compare, Add and subtract Mass i.) $1 \mathrm{~kg} \cdot \% \mathrm{~kg}=$ 2.) $110 \mathrm{~g}+120 \mathrm{~g}$ = 3.) $\quad 200 \mathrm{~g} \cdot 150 \mathrm{~g}=$	\qquad	Compare, Add and Subtract Mass Craig and Billie are both baking some cup cakes. Craig's bag of flour has a mass of: 400 g Billie's bag of flour has a mass of: 900 g Craig says that his bag of flour has half of the mass of Billie's bag. is Craig correct? Explain your answer.
3	[KEY] Measure, compare, add and subtract: lengths ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$); mass (kg.g); volume, capacity (l,ml).	Measure the amount of water in your water bottle, in a small container, in a cup, etc. Compare measuring equipment of different sizes. Is the tallest one always going to have the most capacity? Why / why not?			Georgina is washing her bike. She starts with 900 millilitres of soapy water in a bucket. She uses $\mathbf{1 4 5}$ millilitres to wash both wheels. She uses another $\mathbf{3 8 0}$ millilitres to wash the rest of the bike. How many millilitres are left in Georgina's bucket?	

					$\left.\begin{array}{\|c\|}\hline \text { Compare, Add \& Subtract Units of Capacity } \\ \hline \text { Billy, Kenny and Donna each have a } \\ \text { bottle of water. } \\ \text { Billy }-200 \mathrm{ml} \\ \text { Kenny }-60 \mathrm{ml} \\ \text { Donna }-300 \mathrm{ml}\end{array}\right\}$How much water do Billy, Kenny and Donna have altogether? How much more water is needed to make 2 litres (2000 ml) of water?	
3	[KEY] Add and subtract amounts of money to give change, using both $£$ and p in practical contexts.	Turn classroom into shop and have a buyer and seller			Problem solving and reasoning: Mrs Welch has one pound to spend. She puts these items in her trolley. Does she have enough to buy them all? Explain how you know.	True or false? Explain
3	Estimate and read time with increasing accuracy to the nearest minute. Record and compare time in terms of seconds, minutes and hours. Use vocabulary such as o'clock, a.m./p.m.,	Setting the time on the clock. Reading the time on a given clock. Timing races. How long does It take to write your name 10				- The minute hand is on the 4 and the hour hand is just past the 7 . It is 20 minutes to 8 . True or false? Explain your answer. - My birthday is in a month which has less than 31 days. What months could my birthday be in?

Year 4

Year group:	NC L.O.	Practical	Pictorial	Abstract	Problem Solving	Reasoning
		Make it! SAY IT	Show it/Draw it! SAY IT	Read/Write it! SAY IT		
4	Read, write and convert time between analogue and digital 12 - and 24-hour clocks. (Teach first then drip feed all year!)	Clocks (teaching clocks and online clocks)	Write the time shown on the clock in digits and words:	Grace says, 'On my clock face, the big hand is on the 4 and the little hand is between the 8 and the 9 ' What is the time on Grace's clock face?	These are the radio programmes one morning. 7.00 Music show 7.55 Weather report 8.00 News 8.15 Travel news 8.25 Sport 8.45 Holiday programme Josh furns the radio on at 8:05 How many minutes does he have to wait for the Travel news? Sanaa says, 'On my Roman Numeral clock face, the big hand is on the VI and the little hand is between the IX and the X ' What is the time on Sanaa's clock face?	Do these events happen in the a.m. , p.m. or both? Write your answer next to each event: - Coming home from school - Eating your breakfast - Having a shower - Going to bed - Brushing your teeth - Going shopping - The sun coming up - The sun going down Mr Moore is trying to complete the boxes for the time shown on the analogue clock.

4	Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days. Drip feed this all year			Complete the sentences: There are \qquad seconds in a minute. There are \qquad minutes in an hour. There are \qquad hours in a day. There are \qquad months in a year.	Write the missing numbers.	
4	[KEY] Convert between different units of measure [for example, kilometre to metre; hour to minute]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when doing the time objectives.	Rulers Metre sticks Trundle wheels Measuring jugs Scales Clocks (analogue and digital) Cutting objects to specific sizes.	Here are a pencil sharpener, a key and a rubber. What is the length of all three objects, rounded to the nearest centimetre?	$\begin{aligned} & 1 / 2 \text { a metre }=? \mathrm{~cm} \\ & 0.3 \text { metres }=? \mathrm{~cm} \\ & 0.45 \text { metres }=? \mathrm{~cm} \\ & 1 / 4 \text { of a metre }=? \mathrm{~cm} \\ & 0.05 \text { metres }=? \mathrm{~cm} \\ & 3 / 100 \text { of a metre }=\mathrm{cm} \end{aligned}$	Kate has a piece of ribbon one metre long. She cuts off 30 centimetres. How many centimetres of ribbon are left? Mr Tyler is 1 m 97 cm tall. His young daughter is 83 cm tall. What is the difference in their heights	

						other and the same perimeter as each other" Is Sam correct? Explain how you know.
4	[KEY] Convert between different units of measure [Grams to Kilograms]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when doing the time objectives.	Scales Weights	The large dog weighs 9 kg One of the smaller dogs weighs 4800 g What is the weight, in grams, of the other small dog?	Complete this table, the first two have been done for you.	Half a kilogram of flour makes 4 cakes. How many grams of flour are there in one cake? Senna and Roanna each have a parcel. Senna's parcel weighs $11 / 4 \mathrm{~kg}$. Roanna's parcel weighs $1,800 \mathrm{~g}$ How many more grams does Roanna's parcel weigh than Senna's parcel?	Max has a magical gold bar. Every day the gold bar trebles in weight. On day one the bar weighs 8 grams. What will be the weight of the bar on day two? What will be the weight of the bar on day four? How many days will it take for the bar to weigh more than two kilograms?
4	[KEY] Convert between different units of measure [Litres and Millilitres]. Order: Length, Perimeter, Mass, Volume. Complete time conversions when	Measuring jugs Scientific syringes Liquid containers	Measuring images:	Complete this conversion table, the first two have been done for you. Litres and millilitres Millilitres 31 and 490 ml 4,365ml	This jug holds $1 / 2$ a litre.	Miss Tonkin's water butt is leaking. Every day the water butt leaks half the water in it. On day one there's 32 litres in the water butt. How many litres are there on day two? How many litres are there on day three?

5	[KEY] Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.	Objects that can be measured and combined to make rectilinear shapes e.g. tables, the quad.	Images of rectangles, squares and composite rectilinear shapes.		What is the rectilinear 15 cm	er of this composite 11 cm	Alfie has some rectangles. He makes this shape using three of the rectangles. Alfie says: The perimeter of the new shape will be 3 times as big as the single rectangle. Explain why Alfie is incorrect.

				How many kilograms of pasta does he need for 12 people?	Explain why / why not.
[KEY] Convert between different units of metric measure (litre and millilitre).		All the water in these two containers is to be poured into the empty container below.	Conversion tables.	A bottle holds 1 litre of lemonade. Rachel fills five glasses with lemonade. She puts 150 ml of lemonade in each glass. How many millilitres of lemonade is left in the bottle? Cola is sold in bottles and cans.	

			Draw where the water level will be in the container.		Alex buys 5 cans and 3 bottles. She sells the cola in 100 ml glasses. She sells all the cola. a) How many glasses does she sell? Alex charges 50 p per glass. b) How much profit does she make?	
5	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	Measuring implements with metric and imperial measuremen ts. Inch-cm rulers Litre-pints measuring cups / jugs g/kg - lbs/ozs weighing scales.	Images of measuring implements with metric and imperial measurements. Inch-cm rulers Litre-pints measuring cups / jugs g/kg - lbs/ozs weighing scales. Conversion graphs	Conversion tables	Victoria buys 4 pints of milk. Give the volume of milk Victoria bought in millilitres and litres. This thermometer shows temperatures in both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$. Work out what $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ is in ${ }^{\circ} \mathrm{F}$	Mr Moore has 2 pounds of jam and Miss Goatman has 1 kg of jam. Who has more jam? Prove your answer. Isaac has 9 feet of rope. He is constructing a wall border that is $\mathbf{3}$ metres in length. Isaac says: "I need at least another metre of rope." Do you agree with Isaac? Explain your reasoning.
5	[KEY] Calculate and compare the area of rectangles (including squares), and including using standard units,	Objects that can be measured and combined to	Images of rectangles, squares and composite rectilinear shapes.	Calculate the area of these shapes:	Can you draw (not to scale) the following shapes with an area of $64 \mathrm{~cm}^{2}$. a. A square.	Sarah wants to paint a wall that is 12 metres long and 5 metres high. She has two tins of paint that will each cover 24 m 2 .

				The \qquad of a shape is the sum length of all its sides. There can only be \qquad possible ways of constructing a rectangle with an area of 13 squares because 13 is a \qquad The number of different rectangles that can be constructed for a given area is dependent on the number of \qquad that number has. When constructing rectangular areas some rectangles will look the same. This is because rectangles are like multiplication \qquad \qquad and multiplication is \qquad andiplication		
5	Estimate volume [for example, using 1 cm3 blocks to build cuboids (including cubes)] and capacity [for example, using water].	Dienes Empty containers Empty jugs / cups	Images of cubes and cuboids Images of containers partially filled.	This cuboid is made from centimetre cubes.	Circle the correct amount A tea cup is likely to hold about	

Year 6

					Which two shapes have the same perimeter as shape A? The\%20Tetris\%20pa ving\%20conundrum The\%20Tetris\%20pa ving\%20extension.d	
6	Calculate the area of parallelograms and triangles.	Large, plastic Meccano (In DM's room) Maths shapes	Images of triangles and parallelograms, including all types of triangle.	*Find the area of these parallelogran A. ${ }^{\mathrm{s} m}$ B. ${ }^{2 m}$ \square \square c. Find the area of these triangles:	*On your desk there are some Post-it - Stick one in your book. - Measure the base and height. - Round these measurements to the centimetre. - Use the rounded measurements to calculate an estimated area of the note. *Now do the following: - Cut a straight line at an angle acros Post-it note. - Put the two straight ends together t a parallelogram. *Has your shape changed?	Here is a company logo consisting of three identical parallelograms. The total area of the logo is $108 \mathrm{~cm}^{2}$ and the base and height of each parallelogram is a whole number. List all possible values for the base and height of one parallelogram. Look at all the possible combinations for the length and base of one parallelogram in the previous question. Which combination do you think would fit best for the parallelograms in the logo? Explain your answer.

					*Take another Post-it and make two cuts from adjacent corners to an opposite length What shapes do you have now? Can you calculate the area of the larger shape? Combine the two smaller shapes. Do you notice anything? **The diagram shows 4 identical shaded triangles in a rectangle. The rectangle measures 36 centimetres by 24 centimetres. Calculate the area of one shaded	
6	Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and	Dienes Multi-link cubes	Images of cubes and cuboids, including composite 3D shapes.		Cleo has 24 centimetre cubes. She uses all 24 cubes to make a cuboid	Can you find two or more different cuboids each with a volume of 64 cm3? What's the same and what's different about your cuboids?

| extending to other units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| [for example, mm 3 and |
| km 3]. | | Cubes and |
| :--- |
| cuboids |

					 Not actua Calculate the width of the cuboid.	
6	Recognise when it is possible to use formulae for area and volume of shapes.	Dienes Multi-link cubes Cubes and cuboids Large, plastic Meccano (In DM's room) Maths shapes	Images of 2D and 3D shapes.	*Match the formula to the corresponding area / volume. The same formula may be used more than once. Base \times Height Base ${ }^{\text {2 }}$ Base \times Height \times Width Area of a rectangle of a cuboid Area of a triangle ${ }^{\text {3 }}$ Area of a parallelogram (Base \times Height) +2	Write the dimensions of a cuboid that has the same volume as the cube below: Not to scale Salt boxes come in two sizes:	 Prove your answer This diagram shows a smaller cube inside a larger cube. The volume of the larger cube is $1000 \mathrm{~cm}^{2}$.

